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The purpose of this research is to develop an analytical model for

scheduling check-out servers at the commissary. The goal of the model is

to insure that the average customer waiting time remains constant

throughout the scheduling period. Such a model can save commissary

management much time and effort, and it can save money by improving

the utilization of the commissary workers. The model was developed to be

general enough to be used at any commissary in the Air Force, and it can

also be used at many other different service organizations.
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AbtradI

The purpose of this ,eseareh was to develop an analytical model that

would optimally schedule commissary checkers so that the expected

customer waiting-time would remain relatively constant throughout the

scheduling period. A two-phase model was developed to solve the

problem. The first phase of the model used dynamic programming to find

the optimal number of checkers required throughout each day to meet the

desired customer waiting-time goal. Since checkers cannot be scheduled to

work arbitrarily short tours of duty, a second phase was needed in the

model to find the optimal number of checkers to assign to allowable shifts

in order to meet the optimal requirements determined in phase one.

A simulation was developed to validate the checker scheduling

model. It was found that the scheduling model produced acceptable results

until the last few periods of the day. Additional servers needed to be

added heuristically near the end of each day to obtain the desired customer

waiting times. hM5 kK"k r

Several extensions of this work are possible. First, an improved

approximation for customer line lengths could be used at the end of each

day. Use of such an approximation could eliminate the need for heuristic

rules in scheduling servers during the last few periods of each day.

Second, the scheduling algorithm that was developed did not account for

checker lunch breaks. Accounting for lunch breaks complicates the

problem, but two different approaches were suggested for a solution

allowing for checker lunch breaks. Finally, a third phase could be added to

the model that would allow assignment of actual workers to the optimal

shifts determined in the second phase.

vi



OPTIMAL SERVER SCHEDULING TO MAINTAIN

CONSTANT CUSTOMER WAITING TIMES

1. Introduction

Controlling customer waiting times at service organizations such as

the commissary is a difficult task. Long lines are a common cause of

customer complaints. At the commissary, long lines do not usually cause

customers to leave the store. However, they can result in loss of future

commissary sales by causing customers to do future grocery shopping at

off-base establishments. Long lines can also impair the efficiency of

commissary service by creating congestion in the aisles.

Long lines are not the only problem facing commissary management.

The other extreme, lines that are too short, is also a problem. From a

customer's standpoint, short lines are ideal, but short lines cost the

commissary extra money. To attain short lines, the commissary must

employ extra check-out servers (checkers). Since each store is only

allocated a set number of checker-hours each month, a store may not have

the needed checker-hours available to achieve short lines. Somewhere,

between long and short lines, an ideal exists. Keeping the line length and

the corresponding customer waiting time at this ideal is difficult, especially

in the face of limited total monthly checker-hours.
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The easiest and most common way to control a queue's length is by

varying the number of servers. Obviously, with more servers, short,,r

lines would be expected. Analytical expressions relating the number of

servers to the number of customers in line are commonly available as long

as certain assumptions are met. One of these assumptions is that the mean

customer arrival rate remain constant. Unfortunately, the mean customer

arrival rate at the commissary (and at many other service organizations)

varies throughout the day, making the scheduling of servers more difficult.

Sefic roem

Current scheduling of commissary checkers requires a considerable

amount of the store management's time. At the larger stores, the time

,pent on scheduling is estimated between eight and fourteen hours per

week (Polk, 1988). Efficient allocation of servers depends mainly upon the

experience of the scheduler. A reliable and automated method for

scheduling the checkers would save management time and potentially save

money through improved efficiency.

Research (ob im

The primary objective of this research is to develop an analytical

model that will optimally schedule commissary checkers so that the

expected customer waiting time is constant ttu oughout the day. Some

subobjectives associated with the primary objective are:

1. Make the model sufficiently general so that it can be
used at any Air Force commissary.

2. Specify a goal for the mean customer waiting time and
achieve that goal throughout the month.

2



3. Keep the total number of checker-hours scheduled
during the month below a given maximum number of
allowable checker-hours for the month.

4. Validate the analytical model using simulation.

5. Observe any trends in server requirements during a
month.

The monthly scheduling of checkers is a three phase problem. In --

Phase 1, checker requirements must be determined for the scheduling

period. That is, the ideal number of checkers required to achieve the mean

customer waiting time goal are round in Phase I. Then, in Phase I, all

possible checker shifts are enumerated, and the optimal number of checkers

are assigned to each shift to meet the requirements calculated in Phase 1.

Finally, in Phase III, actual checkers are matched to the optimal shifts.

This research effort concentrates on Phases I and 11. Phase III, which is

essentially an assignment problem, is left for future work.

Plan of the Report

Chapter I has introduced the problem. The background, specific

problem, research objective, and scope of the research were discssed. In

Chapter II, the literature pertaining to this problem is reviewed. Included

in the literature review are sections discussing dynamic programming with

resource constraints, fluid approximations to queues, manpower shift

scheduling, integer and network programming, and application of

lagrangian relaxation to integer programming. Chapter Ill documents the

development of the checker scheduling algorithm. In Chapter IV, a

3



simulation is used to validate the checker scheduling algorithm. Finally,

the results, conclusions, and recommendations are made in Chapter V.

4



I, Literature Review

Overvie

There are six main areas addressed in the literature review. The

first section reviews dynamic programming under constraints. The second

section discusses a simple queuing approximation used to estimate customer

line lengths. In the third section, various shift scheduling methods are

discussed. The fourth section of the literature review shows how certain

integer programming problems can be transformed into network

programming problems and the fifth section outlines how these network

problems can be solved. The final section of the literature review discusses

the lagrangian relaxation technique for solving integer programming

problems that have a special structure.

Constrained Dy1 cfrgr nmin

Dynamic programming is defined by Hillier and Lieberman as . a

useful mathematical technique for making a sequence of interrelated

decisions. It provides a systematic procedure for determining the

combination of decisions that maximizes overall effectiveness (Hillier and

Lieberman, 1986:332)." If a problem can be easily split into stages then

dynamic programming should be considered as a possible solution

technique. At each stage the system can be in one of a number of different

states. A decision is made at the present stage. The effect of this decision

is to transform the system state at the present stage into a system state at

the next stage. The mechanics of this transformation are usually defined

by a transition equation. A recursive function f is used so that the

decisions made at each stage are optimal. The difftculty in applying

5



dynamic programming is in defining the recursive function f and the

transition equation, which together define how to move from one stage to

the next. Figure I shows a graphical representation or dynamic

programming.

\ ,a

Stage Stage 2 Stage 3 Stage N

Figure 1 Graphical Representation of Dynamic Programming

One typical definition of the recursive function f at stage n is

(Denardo, 1982:162):

fn~j [max(mn [Rk,(n)+fn.IUJ)] for flN

j ax(min) [Rk(N)] for n=N

where

n f current stage

6



i = system state at current stage

j = system state at next stage

N = total number of stages in the problem

k - decision made at stage n
Rk(n) = some return function given decision k, state i, and stage n

Typically the return function is some cost function and the objective is

minimization. For this case Rk(n) would represent the cost at stage n

of decision k, and fn+l(j) would represent the total cost of the remaining

stages. Thus the current decision directly affects costs at the current stage

and indirectly affects costs later by determining the next system state.

A dynamic programming problem can be solved by starting at the

final stage N and working backward. The recursive function f is

calculated for every possible state at stage N. To calculate f for a given

state i, 4Ri(N) must be calculated for every possible decision k. The

recursive function f(i) is then equal to the minimum value of Ri(N) if the

objective is minimization. Once fN has been calculated for all possible

states of stage N, a similar process is followed for stage N-I. However,

now the recursion function is calculated using the first part of Eq (1):

fN-14) 2 min [4( N-1)±fNj)] (2)k

One difficulty in calculating f for any stage n, where n;N, is

determining the state j at the next stage ( n+1 ). Recall, the state at the

next stage is calculated using the transition equation. Unfortunately, there

is no standard form for the transition equation. It is usually dependent

upon the specific problem.

7_a
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To apply dynamic programming to a queuing system, the following

must be defined: the system stage (n), system state (i), the stage decision

(kn), the return function (R), the recursion equation (f), and the transition

equation. Generally, the system stage (n) is some specified time period, e. g.

n=1 corresponds to hour one, n=2 corresponds to hour two, and so on.

The system state in a queuing system is usually the number of customers in

line, and the stage decision is the number of servers to have open for the

stage. Definition of the return function is not so simple. One way is to use.

a cost function (Magazine, 1971:178):

K(l)+(knkn-OA+knC if kn> kn-1

(K(i)+( kB+nC i

where

A cost of opening a server

B = cost of closing a server

C = cost of operating an open server for one time period (stage)

K(i) = holding cost, i.e. cost incurred when i customers are
observed in the system

A, B, and C are usually fairly easy to determine. However, it is extremely

difficult to define the customer holding cost, K(i). This customer holding

cost is basically an attempt to put a dollar value on the number of

customers in line. The rationalization for this is that if the line is too long,

business will be lost. The holding cost is a measure of the amount of the

lost business. Obviously, any value used for K(i) can only be an estimate.

The computational difficulty in solving a dynamic programming

problem is strongly related to the number of possible states.

8 1



Unfortunately, the addition or a resource constraint (e.g. a limit on the

total hours available to be scheduled) can dramatically increase the number

of possible states. The reason for this is the way that resource constraints

are typically handled. Usually, an extra state variable, corresponding to

the amount of resource remaining, is added (Denardo, 1982:35). Recall the

prior example, where the system state was given as the number of

customers in line (i). When the resource constraint is added, the new

system state Is now a combination of the number of customers in line (i)

and the amount of resource remaining (y). If the maximum number of

customers in line is I and the total available increments of resource is Y,

then the total possible number of states is now approximately (I x Y).

This increase in the computational difficulty of a dynamic programming

problem as the number of state variables is increased is known as the

Icurs of dimensionalityO (Bellman, 1957:tx).

To avoid the curse of dimensionality in resource allocation problems,

an alternative to dynamic programming is available. This algorithm is

called the amaximal marginal return" procedure (Larson and Casti,

1982:350). The maximal marginal return procedure starts with none of

the resource allocated. Each unit of the resource is then added so that it

maximizes the immediate marginal return (or for a minimization problem,

each unit of resource is added to minimize the immediate marginal return).

The procedure is complete when all units of the resource are allocated.

The algorithm is simple and is usually more efficient than dynamic

programming. Unfortunately, a condition for its use is that the return

function at each stage is independent of the return functions at all other

stages. This condition is often violated in a queueing problem, where the

9 t



state of the system (number of customers in line) depends upon the actions

taken at previous stages.

The Fluid Approximation for Queues (Kleinrock, 1976:56-62)

Analysis of queueing systems is complex because it involves several

random variables; time between customer arrivals is a random variable,

and the time required to serve a customer is a random variable. This

research effort is an attempt to control queue length by varying the

number of servers to the queue. To do this, the effect of the number of

servers upon the queue length must be known.

Queues are generally classified by the distribution of customer

interarrival times, the distribution of service times, and the number of

servers for the queue. For some special distributions of customer

interarrtival times and service times, the exact relationship between number

of servers and queue length can be derived. Probably the most well-

known is the case where the distribution of the customer interarrival times

is exponential and the distribution of the service times is exponential (the

famous M/M/s queue). For more general cases, when the distributions are

unknown or not well-behaved, approximations must be used to obtain a

relationship between the number servers and the queue length. The fluid

approximation is one such approximation.

In any queuing system, the number of customers is a discontinuous

function of time. This is because the number of customers can only change

in integral units-half a customer does not exist. The number of

customers in the system at time t can be given as:

N(t) = A(t) - D(t) (4)

10



where

A(t) = Number of customer arrivals in (0, t)

D(t) = Number of customer departures in (0, t)

In Figure 2, the relationship between A(t), D(t), and N(t) is shown

graphically.

1 --

- AN(t)

44

gD(t)

2-

Time (t)

(Weinrock, 1976:57)

Figure 2 Number of Customers in System as a Function of
Arrivals and Departures

The fluid approximation to a queue takes advantage of the fact that

when a system is in a heavy traffic condition, the number of customers can

be represented as a continuous function of time instead of a discontinuous

function of time. This is accomplished by using the average number of

.... . .. m =mm mm m m lm ~ ll~ll m m ..... .. . . .. ...



customer arrivals and departures instead of the exact values, giving the

fluid approximation as.

Nf(t) = A(t) - D(t) (5)

where

A(t) = Mean number of customer arrivals in (0, t)

D(t) = Mean number of customer departures in (0, t)

If the customer arrival rate as a function of time is given as X(t) and the

service rate as a function of time is given as RI(t), then:

t
A(t) = A(0) + JX(y)dy (6)

t

D(t) = D(O) + JF(y(7)

The fluid approximation is shown graphically in Figure 3.

There are several limitations of the fluid approximation that should

be noted. The primary assumption of the fluid approximation is that the

system is in heavy traffic. If the queue empties out and servers become

idle, the approximation will no longer be accurate. Problems can also arise

at the other extreme-a sudden large influx of customers. The fluid

approximation tends to underestimate queue length when the system

reaches saturation in a very short time (the typical situation during a rush

hour, where X(t) a F(t) ).

Although the queue length may be underestimated for some

situations, the fluid approximation is still valid when X.(t) I s(t) . Most

attempts to schedule servers to queues use the steady-state results of

12
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A(t)

Time (t)

Figure 3 Fluid Approximation to N(t)

the simple M/M/s model of a queue (customer interarrival times and

service times are distributed exponentially). One problem with this model

is that It is only valid when:

p = 'l 1(8)
SIL

which means that the arrival rate cannot exceed the overall service rate.

To overcome this limitation, the number of servers s must be chosen so

that Eq (8) is obeyed. This is the approach used by Segal (1974) and by

Kwan, Davis, and Greenwood (1988). However, there is a more

fundamental problem involved with using the steady-state M/M/s model.

13
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If the customer arrival rate and the overall service rate are changing over

time, then the system never reaches steady-state (Kwan, Davis, and

Greenwood, 1988:267).

The fluid approximation is useful because it is essentially a

deterministic approximation to queue behavior. In other words, if one

knows A(t) and D(t), A(t) and D(t) , or X(t) and it(t), then Nf(t) ,

N(t) can be determined. With most other approximations, all that can be

deduced is the probability distribution of N(t).

Shift Schedulina

The staff scheduling problem is basically a problem of scheduling a

limited resource-people-to meet a set of requirements at a minimum

cost. The general formulation of this problem is (Baker, 1976:157):

Min cx

s.t. Ax > b (9)

x a Ointeger

where

xj = the number or workers for shift j

j = the cost of assigning a worker to shift j

bi = the number of worker required during period i

A = a U-1 matrix with elements aij

I if shift j works during period iaij = 10 if shift j does not work during period i

Problem (9) is a general integer programming problem and can thus be

difficult to solve. However, a special case of the above problem is the cyclic

scheduling problem, where each column of A consists of consecutive ones

14



and zeroes. Such a case might occur when scheduling a 5-day work week

where the days off must be consecutive. For this case, A would be given

as:

1001111

1 1 00 1 1 1

A= 1 1 1 1 01 (to)
1111100
0111110
0011111

The consecutive ones in the A-matrix of Eq (10), sometimes referred to as

circular ones (Bartholdl, 1981:503), indicate that a worker is available

continuously during all consecutive time periods. If this assumption is met,

algorithms are available to solve the problem more efficiently than general

integer programming (Bartholdi, 1981:503).

Segal considers the case where work periods are considered to be

hours in the day instead of days in the week (Segal, 1974). For this case

the A-matrix will be linear instead of cyclic. That is, all ones in a column

of A will be adjacent (the top and bottom rows of A are not considered

adjacent). In Eq (II), an example of such a matrix is shown for eight and

* rive-hour work shifts.

To solve the problem given in (9), with A as in Eq (I1), Segal

converts the problem into a network as shown in Figure 6 (Segal,

1974:812-815). In Segal's network formulation, the nodes correspond to

15



1000 10000000-

1 1 01 1000000
111011100000
I I I I I I I 10 0 0 0

1 1 1 1 01 1 1 1 00 0
A 1 I I 10 0 11 1 1 0 01111011011000

I I I 1 0000 1 I
0 1 11 00 0 0011 1

001 10000001 1
000100000001

the transition from one time period to the next. The forward arcs from i

to iMl correspond to the actual time periods. The backward arcs from m

to I (I < m) represent the possible shifts. The arc parameters can be

defined as follows:

Forward Arcs:

Ui,i+l = upper capacity of arc = the maximum number of workers
allowed at one time plus an estimate of the number of workers
on break

Lili+l = lower capacity of arc = bi0!Ci,i+l 0

Backward Arcs:

UMrl = upper capacity of arc = the maximum number of workers
available to work this shift

LaI f= lower capacity of arc = the minimum number of workers to
be assigned to work this shift

cml = the unit cost of this shift

16



This problem can be solved efficiently using a network flow algorithm. If

the worker requirements (hi) are all integers, then the solution is

guaranteed to be integer.

1900 11

1800 10

1700 m 9

1600 _

1500 7

1400 61 Ui,i_
L i~l + IU m il- -

1300 1 5 Lmi1
CM.

1200 - 4

11003

1000 2

0900 1

Figure 4 Segal's Network Conversion

All of the scheduling algorithms discussed thus far assume that each

requirement bi gives the minimum number of workers needed during

17



period I. This is why the constraints in (9) are given as inequalities. If

the requirements are actually ideal numbers of workers required during

each period, then the constraints in (9) should be changed to equalities.

However, if this were the only change made, then the problem will often

turn out to be infeasible. Therefore, an integer goal programming

formulation should be used (Koelling and Bailey, 1984:302):

Min " - V, V2 ... , Vk
n

s.t. aijxj + d - d = bi , i1,..., m (12)
J-1

xj 2 0, j = , ... , n

where

V = some achievement function to be specified

aij = as defined above

xj = as defined above

= as defined above

di - number of workers below requirement for time period i

d i = number of workers above requirement for time period i

Again, as long as the bj are all integers and provided ' is linear, the

solution to (10) is guaranteed to be integer. Baker gives an almost identical

formulation (Baker, 1976:161). The only real difference is that Baker

defines the objective function specifically as:

m n ni
Minimize . cj xj + I ai d, + I 13i d (13)

j-1 i-i i-1

18



Network Programmina (Veinott and Wagner, 1962:520)

It was no coincidence that Segal was able to convert problem (9) into

a network problem. As early as 1962, Veinott and Wagner showed that

any problem such as (9), where each row of the A matrix consists of

consecutive zeroes, followed by consecutive ones, followed by consecutive

zeroes, could be converted into an equivalent network problem. Suppose

that A is m x n. Each constraint except the first is replaced by itself

minus the previous constraint. The first constraint is left intact. An

additional constraint, equal to the last constraint times -1 , is added. This

method is illustrated by the following example (adapted from Veinott and

Wagner, 1962:520):

XlL11110000001 x2 b
0111111000| . (14)
0011011110 .4
0001001011 - J

After performing the transformation, one obtains:

1I 1 1 0 0 0 0 0- X _bl
- 0 0 0 1 I 1 0 0 0 X2
0-1 0 0-1 0 0 1 1 0 (15)
a 0 -1 0 0 -1 0 -1 0 1
0 0 0 -I 0 0 -I 0 -i -1 jLXj L-bJ

The equations of (15) have the required structure to be represented as a

network. Each column of A contains a single one, a single minus one,

and all remaining entries are zero, and thus A can be thought of as the

node-arc incidence matrix of a network.

19



The Out-of-Kilter Algorithm (Fulkerson, 1961:18-27)

An efficient algorithm for solving problems of the form:

Min cx

s.t. Ax - b (16)

where A is a node-arc incidence matrix of a network, is the out-of-kilter

algorithm. The out-of-kilter algorithm is better than the simplex

algorithm for problems of this form because it eliminates the need to carry

the basis inverse and can thus reduce the computational burden of solving

the problem.

The dual of problem (16) can be written:

Max bu - up
s. t. z A - IL c (17)

By defining:

FJ) = 'From" Node = the originating node of arc j

TU) aTo" Node = the destination node of arc J

Cj - 1F(J) - XT(j) - Cj

the Kuhn-Tucker conditions for optimality can be reduced to:

AX - b (18)

[j<O whenxj=O

for arc J : j=Gwhen0xjiuj (19)

.Zj>Owhenxj=uj

20 n-



For a given (x, z ), arc j is said to be in-kilter if (19) is satisfied.

Otherwise, arc j is said to be out-of-kilter. If an arc is out-of-kilter, the

kilter number is the amount of flow required to convert the arc to the in-

kilter condition. For ( x, x ) to be a solution to (16), the kilter number for

each arc must be zero (all arcs must be in-kilter).

The out-of-kilter algorithm consists of two phases. In the primal

phase, all dual variables are held fixed, and the primal variables are

changed in an attempt to reduce the sum of all kilter numbers. In the dual

phase, the process is reversed. The primal variables are held fixed, and

the dual variables are changed in an attempt to reduce the sum of all kilter

numbers.

Lagangian Relaxation (Fisher, 1981:1-8)

Many difficult integer programming problems can be viewed as easy

problems complicated by a relatively small number of side constraints.

Such a problem can be written as:

Z = Mn cx

s.t. Ax =b (20)

Dx f e

x 2 0, integral

where Ax = b are the difficult constraints. The Lagrangian relaxation is

formed as follows:

Zd(u) = Min cx + u(Ax-b)

s.t. Dx = e (21)

x z 0, integral
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where u = (us, uZ ..., um) is a vector of Lagrange multipliers. For (20)

and (21), the following inequality will always hold.-

Zd(U) :g cx*+u(Ax*-b) = Z (22)

In general, it is not possible to find Zd(u) = Z. However, if Zd(u) = ,

then by (22), x* is optimal.

Obviously, for a fixed u, (21) is easy to solve. Ideally, u should

be found so that Zd(u) = Z. The best choice of u is the solution to the

problem:

Zd - max Zd(u) (23)
U

If Zd(u) were differentiable at all points, u could be found by setting the

gradient of Zd(u) equal to 0. Unfortunately, Zd(u) is not differentiable at

all points, so this will not work here. An adaptation of the gradient

method, known as the subgradient method, has become a popular approach

to selecting u . In this method, a sequence ( uk ) is generated starting at

u0 = 0 and using:

uk+1 = uk + tk(Axk - b) (24)

where xk is an optimal solution to (21) at the previous iteration and tk

is a positive step size. A common equation for the step size is:

tk = Ik [ Z* (uk)I (25)
2ajxj2-
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where ).k is a scalar between 0 and 2. An empirical rule for Xk is to set

X0 = 2 and set Xk = (k-i/2) if Zd(u) has failed to increase in a specified

number of iterations. It should be noted that while Eq (25) has worked

often in practice, there is no guarantee that it will always force

convergence to the optimal solution.

This chapter presented a review of literature for six areas relevant

to this research. First, dynamic programming with resource constraints

was discussed. Second, the fluid approximation for obtaining an estimate

of queue length was reviewed. The third area of interest in the literature

review were previous efforts at shift scheduling. The fourth part of the

review showed how certain integer programming problems could be

converted into network problems, and the fifth part briefly discussed an

efficient algorithm for solving these network problems. The sixth and final

section of the literature review discussed Lagranglan relaxation, a method

for removing or relaxing certain constraints that change an otherwise

easily solved problem into a more difficult problem.
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III. The Checker Schedulir Algorithm

Overiw

The scheduling of servers at a service organization is a three phase

problem. In Phase I, the server requirements for each time period must be

determined so that the desired customer waiting time is obtained. Then in

Phase II, the optimal number of workers to schedule to each possible shift

must be found so that the server requirements determined in Phase I are

met. Finally, in Phase Ill, actual workers are assigned to the shifts in the

numbers calculated in Phase II.

The Phase I problem is solved here using dynamic programming.

The output of the Phase I dynamic program becomes the input to Phase II.

Because of the special structure of the constraints on the possible worker

shifts, the Phase 11 problem can be solved using a network flow algorithm.

The Phase III problem was not addressed here. One approach to the Phase

III problem might be to view it as an assignment problem, where workers

are assigned to the shifts calculated in Phase II.

The solution to the Phase I and Phase II problems were implemented

using Turbo Pascal. The resulting code, named the Server Scheduler, is

given in Appendix A.

The purpose of Phase I is to determine the checker requirements

throughout the month to obtain a mean customer waiting time of five

minutes. The total checker hours must be less than a pre-set number of

hours. Customer arrivals to the queue have been tabulated throughout Air

Force commissaries at one-hour intervals. Because of the time-staged
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nature of the arrival data, a dynamic programming approach is suggested

for determining the checker requirements throughout the month. The

dynamic programming approach assumes that the customer arrival rate

and the service rate can be treated deterministically (the validity of this

assumption is discussed in Chapter IV). It has been shown that the service

time for a customer is given by (Moulder, 1987:105):

service time - 1.46 + 0.05 y (26)

where y is a random variable having a gamma distribution with

parameters ca = 3.2 and 03 = 23. 1. The mean value of y is 73.92, so the

mean service time is 5.156 minutes. The corresponding service rate is

0. 194 customers per minute.

The natural stages in this problem are each hourly interval (n). It

was not possible to formulate a return function in such a way that the

return functions at each stage would be independent, and so the faster

maximal marginal return method could not be used. If, however,

conventional dynamic programming causes the maximum total checker

hours to be exceeded, then a variant of the marginal return method will be

used to deallocate checkers. As in most queueing problems, the state

variable is chosen as the number of customers in line (Ln). The decision

variable is the number of checkers (kn) to have open during period n. As

mentioned in Chapter I, it is usually difficult to formulate a good return

function for a queueing problem. This is not the case here. Because the

Air Force Commissary Service has requested that the mean customer

waiting time be kept at five minutes throughout the day, the return
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function can be defined as the deviation of the waiting time from five

minutes, i.e.

Rn = IWn-5 1 (27)

where Wn is the mean customer waiting time during period n. The

mean customer waiting time can be defined as:

Wn= Ln+ Ln+i (28)
21Lkn

where

Ln = number of customers in line at stage n

Ln+i = number of customers in line at stage n+1

t = mean service rate

kn = number of checkers at stage n

In Eq (27), [(Ln + Ln+l) / 2] gives the average number of customers in the

one-hour interval while Lkn gives the overall service rate of all checkers

combined. The number of customers in line at stage n+1 is related to the

number of customers in line at stage n by:

=1 1. -n An - 60tkn if n t final hour of day (29)Ln+i
0 if a - final hour of day

where all variables are as defined above, and An is the number of

customer arrivals during the one-hour interval (which has been tabulated).

Eq (29) is a fluid approximation to the behavior of the queue, with arrivals

A(t) = An and departures D(t) = 60tkn. The case of Ln+j = 0 is used

to force the queue to empty at the end of each day and start empty for the

following day. For this to occur, the departures in the last period of the
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day must exceed the total number of leftover customers plus the number of

arrivals in the last period, i.e. 60Ikn+l > Ln + An+j . Thus the normal

flow of a dynamic program as shown in Figure 1 is modified as shown in

Figure 5.

The only other formula needed to complete the dynamic

programming formulation is the backward recursion formula. It is as

given in Eq (1), where the objective is minimization:

{mi [ Rn+fn+] for n< N

fn for n N ('30)

kN

The dynamic programming formulation of the Phase I problem can

be summarized as follows:

Stage Variable

n = each one-hour interval

State Variable

Ln = number of customers in line

Decision Variable

kn = number of checkers open

Transition Equation

= Ln + An - 60,Lkn if n final hour of day
I 0 if n - final hour of day

and 60ILkn a Ln+ I - An

Return Function

Rn M IWn - 51 L2+L+ 21,n+An-60Ikn 5
2l~k 2 Lkn
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Rec-ursion Formula

= min Rn+fn+i] forn< NI ~ ~~fn = knr 1 o -

1min[IRN] for n= N
IkN

The Phase I dynamic programming technique is implemented in the

Server Scheduler in the procedure 'Phasel." This procedure in turn makes

calls to procedures to calculate Ln+i ('calc-num-cust), Wn

("waiting-time), and Rn ('Return').

The output of Phase I is a the vector k containing the checker

requirements needed throughout the month to achieve a five minute

waiting time. If the total checker hours exceed the maximum total hours,

i.e.

N
I kn > Max Total Hours (31)
n-1

then checkers must be removed until the total checker hours are equal to

the maximum total hours. A variation of the maximal marginal return

method is used to determine the stage from which to remove a checker.

Checkers are removed, one at a time, from the stage that produces the least

gain in the overall sum of the return functions. In the Server Scheduler,

checker removal via the marginal return method is accomplished in the

procedure "Deallocate.'
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Once the checker requirements are calculated in Phase 1, the optimal

shift schedules can be determined. Because of the number of possible shifts,

it is best to solve Phase II for each day separately and then combine the

daily shift schedules into an overall monthly schedule. It is assumed that

possible shift lengths are 4, 5, 8, 7, or 8 hours long.

The Phase 11 problem is formulated as in equations (12) and (13):

Min ld+ + ld

s.t. Ax+d--d* = b (32)

x z O,integer

d- > 0, integer

d+ > O,integer

where all variables are as defined in Chapter H1. A sample constraint

matrix for problem (32) is given in Eq (33). For simplicity, the sample

constraint matrix shows only shift lengths of 4 and 8 hours.

rbi
b2

1 000 10000000 i-1000000000 00000000000 b3
I1 00 1000000 0 1 -10000000 00000000000
II110 11 100000 0 0 00 1-1 0 00 00 00000000000 b
SI 111110000 0000001-000 00000000000 xt.
SI 1 01111000000000001-0 00000000000
I 100111100 00000000001 -10000000000 d-= b (33)

00011110 00000000000 01-100000000 d b7
I11100001111 00000000000 0001-1000000
0 1 1100000 1 1 1 00000000000 000001-10000 bg
00 1100000011 00000000000 0000000 1-1 00
000 100000001 00000000000 000000000I-1 be

bto

Using the method of Veinott and Wagner (1962) as outlined in Chapter II,

the constraints are transformed into a network node-arc incidence matrix.
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The constraints are illustrated in Eq (34), and the corresponding network

is shown in Figure 6.
bI

b2-bl
b3-b2

1000 100000001 -10000000000000000000 0--

001000 000000000000000000 00 000 
o000 000 00000000- 1 -0 0000000000o000 b9-b

00O 0 0O-1 000 1 000000 00000-1 ( I,-1 O00000 b7

10000000-100010000000000000-1 1 -I000000b -b

0-I0000000-1000000000000000000-1t -i0o bl-b
00-1 00 00 000-tO 000 000 00000 000 00000-1It- bob
ooo-ooooooo-oooooooooooooooooooo-i b11-b10

Since the network problem given in Eq (34) and Figure 6 is equivalent to

the problem given in Eq (33), the solution to the network problem is the

solution to the original integer goal programming problem. But the

solution to the network problem can be round much more quickly than the

solution to the integer programming problem. More importantly, since the

elements or b are all integer, the solution to (32) is guaranteed to be

integral if the constraints are as in Eqs (33) and (34). In the Server

Scheduler, the out-of-kilter algorithm is used to solve the equivalent

network programs. The procedure used is called "MinCostFlow,' and is

based on the implementation of the out-of-kilter algorithm given in

Kennington and Helgason (1980:78-88).
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Lunhreks
Because a special network flow algorithm can be used to solve it, the

Phase 11 procedure outlined above is very efficient. However, this

formulation has not made provision for workers to take lunch breaks.

Assuming that a worker on any shift longer than six hours is entitled to a

one-hour lunch break, the sample constraint matrix shown in Eq (33) must

be modified as shown in Eq (35):

bi
1 I 100 00000 I-I 00000000000000000000 b2
I 1 0 I II 00000000 -000000000000000000 b,,,oooooooooo,.,oooooooooooooob
oiiioooooooooo-iooooooooooooo
101oltillooooooooooOl-lo 0000oO0OOo b5
0 1 O110000 000000000000-I0000OOO0 b
1 01001111000000000000 -OOOO-O00000 d- b6 (35)
oI IooooooJloooooooooooooooooo1-0oo d+ VI1110000111 1000000000000001-1000000 M8
I1110000011 100000000000000001-10000 b
0110000001l 000000000000000000 1-100
oo ooooooo oooooooooooooooo - bIG

kbit

This new constraint matrix is no longer amenable to the network

transformation, and the solution to the problem is no longer guaranteed to

be integral. Therefore, to solve this problem one must resort to more

difficult general integer programming techniques. For a typical day, when

five-, six-, and seven-hour shifts are added, the problem given in (35)

would have 50 to 60 integer variables that range from 0 to 30. Each

individual variable would need five 0-1 variables (25=32). This gives a

total of 250 to 300 variables in a 0-1 integer programming formulation

(too large to solve on a microcomputer).

Several alternate formulations are available that can help avoid the

problems associated the formulation of (35). The first alternate

formulation adds additional constraints for every hour corresponding to a
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shift lunch hour. These constraints are then dualized to form a

Lagrangian relaxation to the original problem. The Lagrangian relaxation

retains the consecutive ones in the constraint matrix, thus guaranteeing an

all-integer solution. The second alternate formulation splits each eight-

hour shift into two four-hour shifts, each seven-hour shift into a four and

a three hour shift, and each six-hour shift into two three hour shifts.

This formulation also retains the consecutive ones in the constraint matrix,

and the solution is again guaranteed to be all-integer.

Larangian Relaxation Formulation. In this formulation, as in the

formulation of (35), the length of a shift with a lunch hour is increased by

one hour. An eight-hour shift is changed into a nine-hour shift, a seven-

hour shift is increased into an eight-hour shift, and a six-hour shift

becomes a seven-hour shift. Unlike the formulation of (35), the added hour

in a shift is not a zero in the constraint matrix. The new formulation is

given in (36):

Min Id-+ 1d +  (36)

bi

I 00 I 0 0 0 0 0 0 0 1-1 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 b2I 0000001-1 0 0 0 0 0 0 0 0 0 0 0 0 0 a0 0 0 0 b3ll ,oooooe -ooo oooooeooooooooob
I Il I 0 000 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (M
II l Il I 0 0 0 0 0 0 0 0 00 -1 0 0 0 0 0 0 0 0 0 0 0 00 lX = b
II11 11 It 00a0 0 00 0 000 1-I 0 00 0 000 00 0 00 ~d- b6
I 100 i l t 0 00000000000 - 0 0 0 0 0 0 0 000 dJ b7
I 10 0 0111 1 0 0 0 0 0 0 0 0 0 0 0 0 0 t-1 0 0 0 0 0 0 0 0 b8
I 100001111000000000 0000 I-I 000000 b9
I10 0000111 00000000000000 - 0 0000 blO
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 I-1 0 0
00 1 0 0 0 0 0 0 0 I 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I-I

The constraint matrix of (36) is not complete. If the only the

constraints of (36) were used, the number of checkers during the fifth,
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sixth, and seventh hours would be overestimated by xj, xZ, and x3

respectively. The reason for this is that the checkers assigned to these

shifts are actually out-to-lunch during these hours. This Is best illustrated

by example. During the fifth hour, the constraints of (36) indicate that the

number of checkers on duty is:

X1 + X2+ X3+ X5+ x8 + xT+ x8 (37)

Since checkers from the first shift are out to lunch, the actual number of

checkers on duty is:

X2 + X3 + X5 + X7+ (38) 

In other words, requirement b5 will be undershot by xi . To off-set the

overestimation of checkers, extra constraints are added to force extra

checkers to be scheduled during lunch hours. For the example given

above, the extra constraint is of the form:

= xj or d5 - xj = 0 (39)

The effect of the added constraint is to force xj extra checkers to be

scheduled during the fifth hour. These extra checkers exactly offset the

shortage created by the checkers that are out to lunch. The complete

formulation for the sample problem is given in (40):
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Min d+ d+ (40)

(bi

0 1 000000 0 1-1 0000 00 00000 00 000 0 b
I I I 0 00 000 00 -I 0000 00 000000000 0 b
I I I I I 1 0 0 0 00000001-1 0000 000000 0000 X b5
I 1 0 111 1 0 0 0 0 0 0 0 0 0 0 0 1-1 0 0 0 0 0 0 0 0 0 000 d - b6
I I o 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 000 Id b7
I I 10 0 a I I I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 bS5

I I 0 0 0 0 i 1 i t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 b9
I 10 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-1 0 0 0 0 blO
0 I 1 00 0 0 0 0 I 1 0 0 0 00 0 0 0 0 0 0 0 0 0 0 000 I-I 0 0 \blI
00 0 0 0 0 0 0 0 I 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1I +d5 - xi = 0

d -X2 =0

d4-x3 = 0

The extra lunch-hour constraints in (40) destroy the consecutive ones

property that allowed the problem to be converted into a network (and

insured an integer solution). To regain the consecutive ones property, the

lunch-hour constraints are dualized and a Lagrangian relaxation is

formed:
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Min (d +d)] + uu(d X + U2(d X2) + U3(d; (41)

bi
0 0 0 0 0 0 00 1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b2

I110 11 ao0oo0o0ae 1 -1 eoo0oeooso 0b3 000000
011i 0 O0 0 O0 I-I 0 000O 00000 0000 000 b4

I I I I 1 0 0 0 0 0 0 0 0 0 0 1-1 0 0 0 0 0 0 a 0 0 0 0 0 0 x b5
I 10 1 1 1 1 0 0 a 4 0 0 0 0 0 0 0 1-I 0 0 0 a 0 0 0 0 0 0 0 0 d b6
I I 1 0 1 10000 0 0 0 0 0 0 I-I 0 0 0 0 1 0 0 000000000 d b
I 10 0 0 1 1 1 1 0 0 0 0 0 0 000 0 00001-100009000 b$
I 1 0 0 0 0 1 1 1 1 0 0 0 0 0 6 0 0 0 0 D 0 0 0 1-10 0 0 0 0 0 b9
I I 1 0 0 0 0 11 0 0 0 a1 0 0 0 0 0 0 0 0 0 0 1-1 0 00 bI
0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 -I 0 0I
00 1 0 0 0 60 0 0 I 00 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 -I -1

Theoretically, the problem formulated in (41) should be solvable by

the method outlined in Chapter 2. First, the multipliers are set at u0 -

(030,0), and the resulting problem can be solved using the network flow

algorithms already outlined. Then the multipliers are updated using Eqs

(24) and (25) and the process is repeated until a solution is found that

satisfies the extra lunch break constraints ( tk = 0 in Eq (25)).

Unfortunately, implementation of the Lagrangian relaxation method for

this problem proved to be difficult. Apparently, this is one application for

which Eq (25) failed to produce convergence to the optimal solution.

Lagrangian relaxation is still a promising method for solving the shift

scheduling problem with additional constraints (including but not limited to

lunch break constraints). However, a different policy must be found to

update the multipliers, since Eq (25) has proven to be ineffective for this

application.

Split-Shift Formulation. Another promising way to account for

lunch breaks is to break each shift requiring a lunch break into two shifts.

For example, an eight-hour shift extending from 0900 to 1800 with a lunch
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break at 1300 would become two four-hour shifts, the first extending from

0900 to 1300 and the second from 1400 to 1800. Similarly, seven-hour

shifts are split into a four and a three-hour shift, and six-hour shirts

become two three-hour shifts. Using this formulation, the final constraint

matrix consists of five, four, and three-hour shifts:

(bi
b2

10000001 00000001000000001-100000000000000000000 b3
S1 00000110000001 1 0000000001-1000000000000000000
I I 100001 110000011 10000000000-10000000000000000 b4
I1100011110000011 1000000000001-100000000000000 X b5

11111 000111 10000011100000000000 -I 000000000000 d- = b6
01 1 1000 1 1 10000011 100000000000001-10000000000 b7 
00111 1 10001 11000001 1000000000000001-100000000 b8
0001 1 1100001 11 1000001 1 0000000000000001-1000000
00001 110000011 10000001 1 100000000000000001-10000 b9
00000110000001 100000001 i0000000000000000001-l00 b1O
000000100000001000000001000000000000000000001- bli

The split-shift formulation is not without complications. First,

solution of the problem given in (42) gives optimal numbers of five-, four-,

and three-hours shifts. Some way must be found to convert these shifts

back into eight-, seven-, six-, five-, and four-hour shifts. Since this

conversion could be done by hand if need be, this is not a serious limitation.

But a serious limitation does exist. If three-hour shifts are not allowable,

one must ensure that all three-hour shifts in the optimal solution can be

converted into six, seven, and eight-hour shifts. There are at least two

possible ways to ensure this. The first way maintains the network

structure but does not guarantee that a solution could be found, while the
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second guarantees a solution but requires a Lagrangian relaxation problem

to be solved.

The first method for ensuring the conversion of three-hour shifts is

similar to branch-and-bound methods for solving integer programs. The

problem of (42) is first solved as given using the network algorithm (as

before). If all three-hour shifts can be converted into six-, seven-, and

eight-hour shifts, the problem is solved. If, however, there are M3 extra

three-hour shifts that can not be converted from shift xm, then an upper

bound of x3 - M3 is placed on x3, and the problem is solved again. The

process is continued until a feasible solution is obtained.

The second method for ensuring that the three-hour shifts can be

converted consists of adding extra constraints. For each three-hour shift,

all other shifts that could combine with the three-hour shift to form a

six-, seven-, or eight-hour shift are enumerated. The sum of the checkers

assigned to these other shifts must exceed the number of checkers assigned

to work the three-hour shifts. For the problem of (42), this means that

the following constraints must be added:

X1S r X12 + x20 (43)

x17 : x13 + x21 (44)

x18 : x14 + x22 (45)

X19 • x15 + x23 (46)

X20 XIS + X24 (47)

x21 x+ x17 (48)

x22 X9 + X18 (49)

X23 XO + X19 (50)
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X24 : X11 + X20 (51)

These extra constraints again destroy the network structure of the

problem. To regain that structure, one can again apply a Lagrangian

relaxation with the same complications experienced in the original

Lagrangian relaxation formulation. Of course, if three hour shifts are

allowable, then the formulation given in (42) can be used, and the optimal

solution would be obtained.

Suimmary
The Server Scheduler Program implements a two-phase algorithm

for scheduling servers at a service organization (specifically, checkers at

U.S. Air Force commissaries). In Phase I of the algorithm, dynamic

programming is used to find the number of servers required during each

scheduling period to obtain a target customer waiting time. A fluid

approximation to queue length is used to calculate the average customer

waiting time during each period. Then, in Phase II of the algorithm, the

optimal number of servers to schedule to each possible shift is found so

that the requirements determined in Phase I are met. Integer

programming was used to implement Phase II of the scheduling algorithm.

Because of the special structure of the constraints in the Phase II integer

program, network techniques could be used to solve Phase II efficiently.

Scheduling of checker lunch breaks is a difficult extension to the

Phase II shift scheduling problem. A brute force approach, simply adding

zeroes to the corresponding row of each shift, destroys the structure of the

problem. With this approach, applying linear programming to the problem

is not guaranteed to produce an integer solution, so more difficult and
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time-consuming integer programming methods must be used. Use of

Lagrangian relaxation regains the special structure that allows efficient

network techniques to be used iteratively to solve the problem. However,

commonly used multiplier update formulas do not work for this problem,

so more research is needed to determine if a Lagrangian relaxation

technique can be successfully applied here. Finally, a split-shift

formulation was explored. In this formulation, each shift with a lunch

break was split into two shifts. Again, the special network structure was

regained that would allow this formulation to be solved efficiently. If

three-hour shifts are allowable, this formulation works. However, if

three-hour shifts are not allowed, then Lagranglan relaxation techniques

must be used to solve this formulation.
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IV. Validation of the Model

Overvie

This chapter is concerned with the validity of the Phase I part of the

Server Scheduler model, i.e. the determination of the optimal checker

requirements. Two different types of model validation are discussed here.

First, face validity of the model is briefly explored. That is, does the model

and its output seem to make sense? After face validity is checked, a

simulation is used to see if the model achieves its goals-specifically the

achievement of the desired mean customer waiting time. The simulation

can also be used to investigate the general behavior of the system under

some typical conditions.

The data used to test the model was tabulated for three weeks in

May and June of 1987 at the Lackland AFB Commissary. It consisted of

hourly counts of the number of customers arriving to the queue and the

number of customers currently in the queue. This data is given in

Appendix B.

Using the three weeks of data given in Appendix B for customer

arrivals, Phase I of the Server Scheduler was run to determine the optimal

checker requirements. In Figure 16, the checker requirements kn and the

arrivals An are plotted against n for a typical day. As would be

expected, when the number of customer arrivals increases, more checkers

are required. Also, when the number of customer arrivals in a period is

very large, extra checkers are scheduled in the preceding periods in an
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attempt to prepare for the surge. So from a simple face validity

standpoint, the output of the Server Scheduler is consistomt and sensible.

Customer Arrivals

350
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50 ,

1 2 3 4 5 6 7 a 9 I0 1t 12 13

Checker Requirements

30-

1I \,

1

Figure 7 Checker Requirements for 11 Jun 87
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Simulation of the System

To truly test the performance of the Server Scheduler, simulatiorLs

were constructed for two typical days from the three-week period. The

days chosen were 6 Jun 87 and 11 Jun 87. Four different simulations

were run for each day, each using different assumptions. A slmmary of

the assumptions for each of the five simulations follows:

1. All parameters were assumed to be deterministic.
Customers were assumed to arrive at a constant rate
throughout each hour, and the service time for each
customer was assumed to be 5.156 minutes.

2. Customer interarrival times are distributed
exponentially with a known mean. Service times are
also randomly distributed, with the distribution given by
Eq (24).

3. Customer interarrival times are distributed
exponentially, but now the mean interarrival time is a
random variable with a normal distribution. The mean
or the mean interarrival time is known, and the
standard deviation of the mean interarrival time is 5% of
the mean. Service time distributions are still given by
Eq (24).

4. Same as case 3, but now the standard deviation of the
mean interarrival time is 10% of the mean.

The simulations were run using SLAM on a DEC VAX-8650 running

under the VMS operating system. The SLAM model is shown in Figure 8,

and the SLAM code and output for each of the 8 runs is given in Appendix

C. The customer waiting time during each period was averaged across 50

runs of each simulation. A plot of this average is given in
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Figures 11 to 18 for each simulation, along with the expected results

according to the fluid approximation used in the Server Scheduler (Figures

9 and 10).

Comparison of the simulation results against the expected results

according to the fluid approximation of the Server Scheduler shows that

for some cases, the Server Scheduler is fairly accurate, and for other cases,

the Server Schedultr is very inaccurate. Specifically, the Server Scheduler

produces good results early in the day. However, toward the end of each

day, the customer waiting time in the simulations exhibited a marked

increase. Two approximations were made in the Server Scheduler that

might have caused this problem. They were the approximations used to

calculate the number of customers at the end of each period and to calculate

the mean customer waiting time for each period.

AvgeCustorerW ng0 Tie

120"

tA 6

II

0 50 100 150 200
n

Figure 9 Fluid Approximation for Entire Scheduling Period
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The approximation for the mean customer waiting time of each

period is given by Eq (28):

wn = Ln+ Ln+1 (28)

To test the accuracy of this approximation, the Case 2 simulation for 11

Jun 87 was repeated, and the number of customers at the end of each

period was averaged across 50 simulation runs. This allows a comparison

between the mean customer waiting times of each period and the

approximation of Eq (28) using actual simulation values for Ln and Ln+I.

This comparison is made in Figure 19, and the approximation appears to

be fairly accurate.
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Figure 19 Comparison of Approximation and

Actual Customer Waiting Times
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The approximation for number of customers in line at the end of

each period is given by Eq (29):

= f L+An-6I&ka if nofinalhourof day (9
0 if n=finalhourofday (29)

The values of Ln from the last simulation are compared to the expected

values of Ln given by the approximation of Eq (29) in Figure 20. Notice

that near the end of the day the approximation for Ln becomes

inaccurate. This is the probable cause of the long waiting times observed

at the end of each day in the simulations.

.40

t /Si3mulaed Line
Soe- ralculated Line
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Figure 20 Comparison of Approximation and"1

Actual Customer Line Lengths
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...........

To correct for the end of the day underestimation of line lengths

show in Figure 20, an additional checker can be added at period 10. The

effect of the additional checker, shown in Figure 21, is dramatic. The

mean customer waiting time is reduced to acceptable levels.
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Figure 2t Effect of Additional Server at End or Day
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V. Results, Recommendations, and Conclusions

Summary of Results

The primary objective of this research was to develop an analytical

model that could be used to optimally schedule commissary checkers so that

the expected customer waiting time remains relatively constant throughout

the day. Such a model was developed and proved valid for most of the

day. There were slight problems with the model at the end of each day,

but these could be corrected by heuristically adding a server when the

customer waiting time begins to increase. Since commissary managers

typically have a number of discretionary employees available for temporary

surges, this model could work in practice.

A subobjective was to make the model sufficiently general to be used

in any Air Force commissary. The model developed is actually general

enough to be used in any service organization where the customer arrival

pattern is known. It allows the user to specify a mean customer waiting

time goal, the second subobjective of the research. The deallocation

procedure ensures that the third subobjective, to keep the total checker-

hours below a maximum allowable number, is met.

The checker scheduling model was validated using simulation. The

simulation showed that the model worked for most of the scheduling

period. However, as mentioned previously, the model did tend to produce

overly optimistic estimates of mean customer waiting times late in the day.

The Server Scheduler program could be a valuable tool for

scheduling commissary checkers. The program is overly optimistic toward
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the end of each day, but this problem can be corrected if only a single

discretionary employee is available for one scheduling period near the end

of the day. To eliminate the need for discretionary employees, a different

approximation could be investigated that can successfully predict customer

line lengths as they approach zero.

The Server Scheduler program implements two phases of a three

phase problem. Although all objectives of the research were met, there are

two obvious extensions of this work. The first is to solve the third phase

of the problem, which is the assignment of actual people to specific shifts.

The second is to improve the Phase II part of the algorithm (where the .

number of checkers to assign to each shift is determined). Currently, the

Server Scheduler does not take lunch breaks into account. Several possible

techniques for accomplishing this were outlined in Chapter III, along with

limitations of these techniques.

The Server Scheduler provides a reliable and automated method for

scheduling commissary checkers. The method can save management time,

and it can save the commissary money through improved utilization of

checkers. The method is sufficiently versatile to be used in any commissary

in the Air Force.
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Appendix A: Server Scheduler

pr~Sw%%wSdvhe Ior;

Phae I of this proW calculates the optimal number of
cheakers neddthroughout the dayj (month) in or-der to achieve
a five minute customer waiting time.

1h1eI of this proWom then determines the optimal number of
checkers to assign to each shift In order to meet the Phas I
checker re~i rements.

u~ses PasPr Inter;

tFIXSThIE8 a 372; {max 0 stages In a month
Ml a 0.gg5 AMueag service rate

INV~t - 5. 150; (ameag service time)
TNha 00.0; ( time in one stage )
IRL.D4ECKERS - 30; (mim ne.aer of open checkers )
flIlLOECKERS a 1; m inimuim number of open checkers )
ULtAX - 100; (mImm number of customers in l ine
ItFINITY n 3.4E318; (biggest allowed real nubw = Infinity
IIIT..lI INITY a 2000000000; ( biggest allowed Integer a infinity
Mfltfr 255; ( maximum 0 arcs allowed In tlinCostFlow procedure)
lMwdiodez 254; (MN maia noe allowed in lllnCostFlow procedure

lnt~rrayl -arr [.j(. .ltX of Integer;
Real&rayj1 array(0. .LtMX of real;
lntft'ray2 uartajl .-IRXTROES1 of Integer;
DaWfUmak M (ondayj, Tuesdayj, Uednesdwaj, Thursdayj, Fri day, Saturday, Swr~daq0;
Hours a recmr

open integer;
close integer;

end;
date w record

month : . . 12;
dy 1. .31;

yewr 1gg80-2100;
enid;

0~f-a CR arr 1jl. flxArcs3 of integer;
Noddir~ arraqjt1. .faxtlodes) of Integer;

var
n :integer; stage variable )
hour :Integer; (each hourly interval in a day )
Mt :i nteger; ( total 0 stowe in a month )
TotalStages integer; (also total 0 stages in a month )
TotalHours integer; {total C checker hours allocated )
flaxHours : ongint; ( mimam 0 checker hours to be allocated
k Intray2; ( number of checkers open in stage n )
d arrayl..MXMSTAGESI of -Intfrrayl; ( optimal decision table )
f amra(1. .IRXSTAOEI of A*eal~.ray.J; (forward recursion values )

57



L I Mntger; n umbet of customes In lIn In
nexU..: Integer; number of customers In Iline at next stage
A : I ntFrr%; {numetof arrivalsIn stop n)
e : real; ( customer waiting time)
target :real; (desired customer waiting tim
tempi Integer; 4tempoir' variable)
temp2 :real; 4temorary variable)
temP3 :real; 4temoraryj variable)
R : real; 4return function value)
i~j :integer; 4Integer loop control variables)

dp integer; 4number of customer departures in stage n
tim array [Dapjf~eekI of hours; 4daily~ hours of the store
CurrentDay : Waf~eek; (current day of the week)
FIrstDay : aWfMak; 4 st day of schediuI Ing per iod
LaxtDay : aWfl~eek; I las t dayj of scheduI Ing per iod
choice : Integer; 4used in menu to select portion of proWo to run
done : boo Iam; ( terminates the program
First~ate :date; I st date of scheduling period
Last~ate :date; 4last date of schedul Ing period)
CurrentDate :date; (current date i n scheck Ii ng per iod
Exceadours :boolean; ( tell Is I f romd4ours am exceeded

-4 - -- - - - -- - - --- - - - -- -- - - - - - -- - - - - -

function cal cjium-.cumt (I ast-um...ut, arrivals, num-.servers:
Integer; lnterval,service..rate : real) :Integer;

This function calculates the num~er of customers in l ine at
the end of the next stage given:

last.num...ust a 9 customers at the beginning of the stage
arrivals = 0 customers arriving during the stage

nta~ierver servers open during the stage
service..rate amean service Pate of allI open servers
Interval a length of ti"e in the stage

temp : Integer; 4store 0 customers to chc if it i s nornegat ive

beg in
temp :a last-num-.cust + arrivals - trunc(lnterval*service.rate*rm-servers);
if temp ( 0 then

cGlC..nM...cut :- 0
also

end;

function wal ting..time (nm..cust,roxt-num...cust,rum..swver
Integer; servlce-tme : real ) : real;

This function calculates the mean customerL waiting time in time
period n given:

nuL..cust a numb&L of customers In line at the beginning of
time period n

nextnm..cust a number of customers in l ine at the end of
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tim period n
nua servers a tumbe of servers open dur Ing t Ime per Iod n
service-time amean serviee time of atll servers

beg in
waiting.time :- (num..cust +nexmitum..~cwt) * 0.5 * service-.time / n~v-servers,

and;

fun~ction Return (Uait,desired..uait :real) : real;

This function is the return function of the dyntamic prog'aming
formulation:

Rin] * ait~nJ - desired..wait

Walt a the aeon customer waiting time
desired.mait a desired customer waiting time

beg in
Return :- Rbs(Mait - desired..uait);

end;

proedur Deallocate;

If the dynailc programming algorithm results In an optimal
atllocation of checkes wich is cibove the l imi t on total
hours, this procedure is used to remove checkers from stages
so that the change in the return function is minimized.

var
stope : integer;
best-.place : integr W best stage to remove a server}
Z : real; (current best value of objective function)
new..z : real; value of objective function to be tested

beg in

while (TotalHours ) tiax~ours) do
beg in

z := ItFIMTY;
for n : =Itolfldo F idbest p Iace tore va server)

beg in
I f kin I ) IIMtLHECI(ERS then

beg in
k(n) :akin) - 1; (reduce number of sees at stage n

(Calculate the new return

CurrentDay :a FirstDay;
hour :*time(Current~ayI~open;
nin.- : 0;
L :*0;



for stage : 1 to Ido
b in

if (hour (tim(CurrentDay].close - int(Th/O.O*100))) thennexLL : 0
also

next-L :a,,cI cal mcut(L.,R[stop 1, k stage 1, TII,P);

a :a uaiting.time(LnexLL,kistge],UItU);
R :, Return(e, TRET);
nev.-z :r n z + R;

If (hour a (tlme[CurrentDa.close - lnt(Th/O.0*100))) then
begin

i f CurirntDay Sunday then
CurrenUay Monday

else
CurrentDa : suc(CurrentDa);

hour :a time[Currentl)ey].open;
end

* Is*
how := hour + int(Thi/G.0100);

end; ( for stage :a I to 111 )

( !f the new return is better, emiber it }

If mew.z < z then
begin

z :* neu..z;
bestplace :a n;

end; ( If neu.z ( z )

k[nI := k(nI + I; (restore number of servrs at stage n

end; { if kin) > IIIL-ECKERS )

end; ( for n :a I to M9 )

( Remove server at the best place }

k(best-plceJ := kbesLplawel - 1;

end; ( while (TotalHours IlMaxHors) )

end; I procedure Deallocate )

procedure FIIOPTablIe;
var

ch : char;

beg in

Cl erScreen;
eriteln('Storting to fill DIP state-stage table');

CurrimtDy := LastDay;
if time(CurrentDa]l.open = timelCurrentU).close then
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beg in
i f Current~ou M fondayj then

Current~ayi Sundy
also

CurrentDay : pred(Current~cuj);
end;

howr -a time(Cuwrent~ay.close; fBegin with lost stage
n :a Mt;
witein~n = u )
for L := 0 to LIIAX do

beg in
temp2 1~ 100.0;
if (<TM * MI * MRX..CECKERS) < L) then

beg in
tempi := iIALDECKERS,
w : iaiting..tim(L,O,1RX..LEcKERS,MIMJW);
A Retwrn(w, tarjet);
temp2 =~ R;

and ( i f ((TH * Ml * rIAX...CED(ER) < L))
elso

beg in
for j hu Ii K...ECKERS to 1IAX...CECKERIS do

beg in
if (Cm* * M >) ' (L + RItt13) then

beg in
w := waiting..time(L,O,J,lINU);
A :s Retuan(wj arget);
if A ( temp2 then

beg in
temp2 Rm ;
tempt I:

end; ( if A ( temp2)
end; (if ((Th * tM* j) (L+AtI)

endl; ( j M MLCHCKERS to MIAX..CHECKERS)
end; { else)

d(N1l^I: tempi;
f(MI^ILI temp2;

end; ( for L :*0 to OKlX
hour :u hour - int(Th/60.O*100);

for n := W-1 doento I do
beg in

writeln('n a ,)
if (hour a ti1merCurrentoo Lopen) then

beg in
temp2 := 100000.0;
for ) :s MiI't.CECXERS to MAX-DCHKERS do

beg in

if next.. < LMIX then
beg in

w a iting..tIme(0,nxt-.Lj,MIHWJ)
A : Return (w, target);
If (R+fln4IJ~fnext-LI) < temp2 then

beg in
temp2 :a Ref (n+llinxt-LJ;



enid;
encd; { If nexL-L 4 U.M then)

and; {J M I flhI*XECES to tIRX..C2ECKERS)
d~n)'1OI to te1;
fIn3^[O) :a tp2

end ( if hour a tims[CuarentDoqj),open)
else

beg in
If (howr a (tim(Cwrentaylj.close)) then

begin
for L :0 to L.M do

begin
tem2 := 100000.0;
I f ((T QM * M * I1RX.CECKERS) < (L +4 inl)I then

beg in
tempi1 :a iACECKEM;
nexU-. :a calc-ut(L (,Rtni,t~LFaCHKERS,T,M);
v :- al ting..tlee(L,nect..,tWJClECKER,lUINU);
R :Retun(v, target);
tem2 := R + fln+13^1O;

end {if ((T * MI 0 MIIAXWICKERtS) ( (I. + Rin))
else

begin
for j := IKtCOCMR to IIRX..CHECERS do

beg in
If ((Th * IJ * j)' L +R~nI) then

beg in
v :m alting-.time(L,0,j,ItI);
R : Return(target);
if (CR + fin+1II10J) ( tem2) then

beg in
tem2 :A + f (n+ I11;
tempt j;

endl; ( if A + fln413^10J < tWm2}
endl;{ if (CN * Ml * j) I- L) )

wid; ( j M I -HCKR to IURX..HEC2ERS
end; (aelso

din)'11 :* tempt;
ftn1^(LI temp2;

endl; ( for- L :*0 to LMAX)
and

els@ norml how of the dayj
beg in

for L :m 0 to LflAX do
beg in

tmmp2 1* 000.0;
for- j Mu I KXCHEKERS to IALCECICERS do

beg in
nexL-L := cac..num..cust(L, Rini,J, TM,M);
if next... ( LtVIX then

beg in
w :u waiting-time(L,next-Lj,IMV);
A := Return(w, taget);
If (R4f~n4IIA1nextJ.J) < temp2 then

beg in
temp2 :*R+fin+i1~nextL1;
tompw) J;

62



arid; (If (R*f~n.11'[nextLD3 teo2
end; (if nexU.L ( UM

endl; ( J Mu IIIL.DECl to 1'FOLX...CECS
dlnna[LI :a tep2;

end; ( L :0 to UM
endl; ( el1so

en-d; (aelso )

if (hour a t lme(CeurrentDayl. open) then
beg in

If Curent~aqj M ondayj then
Curt'entDay SurndoU

else
C4.rrentDayj: Pred(CiurrentDay);

If tim(CurentDayJ.open = tiselCrrentDaql.close then
beg in

If CurrentOWe M tondayj then
CurrentDay Sunday~

else
Current~pj : Pred(CuarentDay);

end;
hour :- tlaelCuaient~ayl.ciose;

end ( if (hour - timelCurtentDayjiopen))
also

hour := hour - lnt(TH/5O.O*100);

end; ( n :a Mi-1 doento I

end; ( procedure FiIICP~abie)

procedure ForwrcPazs;
var

ch :char;
beg in

writelnC'Starting foovard pass in DID);

L :- 0;
Cu~rrentDay -a FirstDoej;
if time(CurrentfayLolopen *timeiCurrentflaql.close then

beg in
if CurrentDasjaSidi then

Current~oy Monda
else

CaurrentDoj : suce(Currentaey);
endl;

hour :utime(CurentDael. open;

Total~ar 0;

for n :I to Mt do
beg in

ur'iteln('n
kin) := dlnl*[LJ;
Total~oure :a Total~ours + kin];
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if (howr M tmelCurrentDaij.close)) then

also
rmctLL :a calc-uma...ct(L,AlnI,k~n,TH,NU);

L :a nexL-L;
if (howr w timelCurrentDayj.close) then

begin
I f (Cwrentciy & wiak) then

also
CurrentDaU : Succ(CDrrattDayj);

if tieCurrentDa!JI.opena timelCurrentDayI.ciose then
beg in

I f DurventDayj Sundayj then
Current~ay M*fonday

also
CurrentDayj: suce(Curent~ayJ);

end;
hour := timlCirrentDaqjl.open;

and ( If (hour a timelCurrentDay.close))
*ls@

hour :a hour + int(Th/O0.0"100);
end; ( n Iu to Mt )

end; ( rc~eFormard~ass)

procedure Getftrrivals(var rumStogec:integer; var arrivals: lnt~rray2);

var
IlnputFi It text;
n :integer;

begin
eet(lrputFi It, *Ftlrrvals.dt);

n :- 0;
while not SeeliEof(IriputFi I.) do

beg in
n :0 n + 1;
If not SeeklEotn(InputFi I.) then

rekod(InputFiIc rrivalsini)
also

beg in
read I n;
reac)(InputFi ie,wrivalsin)

end;
end;

IumStages n;
end;

procedur I n I tHawrs;

This procedurv sets default store hous as:
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Day Open Clam
-Mda 0000 0O0

Tus.da 0200 2OO
Wednesay 0000 1
Thursday 000 2100
Frida 0900 100
Saturda 00 1800-&k1 0900 1700

dy Dy0fet;

begin
time"flWon].Qlop :- 0000;
timeCIondol.close :a 0000;
tlImmmidal. open 0000;
tig[Tunesday L.close : 2000;
tiiei[ edh I.opin : 0en 0OM
timeWednesdral.close :- 1000;
time(Ta sday1.ape :a 0000;
titmiThursd.close :- 2100;
timieFriday.open := 000;
tlme(Frid 1.close := 1900;
timelsaturiyl.open :U 0800;
time(Saturday).close := 1800;
time(Sunda.)open := 000;
timeSunadoyj .close = 1700

end; J prcedue Initows
.. .. . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . .I lI I . .

proceda InitPointrs(number.of..stges : integI);{
This procedure Initializes the pointers for dIynmic memory
al location.)

begin
for n := 1 to number.af.stoges do

begin
Mew(dln 1);
Nl(fIn] );

end; end;

procedue Ini tTarget;

This procedure sets the default customer waiting time goal
to 5.0 minutes.)

begin
taget :- 5.0;

end; ( procedure InitTarget)
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%acer I n I fModicurx;

This procedre sets the defoIlt maximaII owlI checker hours
to Infinity.

begin
fhodiows :a INT.ilFIMITY;

end; procer Initmd4aHus )

procedure fnu(va selection : integer);

begin
ClearScreen;
GotoXY(23, 10);
r Ite('l. fun Phas I');

GotoXY<23, 11);
ori te('2. FAm Ph1e I1);
OotoXY(23, 12);

lrite(*3. AI P1ase I & Phase I1');
GotoXY(23, 13);
writ('4. Set Mek*Iu Store Operating Hours');
GotaXY(23, 14);
writeV*S. Set Desired Customer Malting Tim');
GotoXY(23, 15);
write<'6. Set Limit on Total Checker Hours');
GotoXY(23, 16);
oreit('7. Qu i t;-
GotoXY(23, 19);
write('Enter Selection:');
.re dln(select ion);
ClI earScreen;

end;

procedure eodate(vor FirstDate, LastDte: date);

This procedure asks the user for the first and last day to
be scheduled and converts the input Into the proper date format.}

var
FirstDay, LastDou : string(IO1;
Bodiesponse: boolean;

begin
ClearScreen;
repeat

BadIResponse :- false;
GotoXY( 12, 12);
write('Enter first day of scheduling period (m/dd/y wy):');
ridIn(FIrstD);
If (ord(FirstDmcyl]) > 49) or (ord(FlrstlOjcyl) ( 48) then

Badklsponse : true;
if (ord(FirstDay(2) 5?) or (ord(FirstDayl2)) ( 48) then

BadResponse := true;
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If (FirstDaL1I * 'V) mod (ord(FirstaqjC2i) '50) then-aRFMM :0 true;
If (ord(FIrstDmy(4I) 3 51) or (ord(FlrstDayI4)) 4 46) then

Boff~oqwm - true;
if (ard(Flrst~scjI5I)) 57) or Cord(FirstDayC51) ( 46) then

hadmpm :a true;
If (ord(Frsto[7)) > 50) or (ard(First~cyl7l) 4 49) then

BaO n sePR : 0true;
If (crd(FlrstDaj[SI) > 57) or (ardCFirstDayiO3) ( 46) then

BodPesponse :a true;
If (ord(FlrstDf91) ) 57) or (ord(FIrstDmy19)) ( 48) then

Bad~lesponse := true;
if (ard(FlrstDay(10I ) 57) or (ord(FirstDcy( 101) ( 48) then

Bad~esponse :=rt~~6 true; ha
if(FirstDaI~j31 (' Y) or Frtcl (Y)he
BacIFesponse := true;

if BadRespons then
beg in

Cloworeen;
GotoXYC 12, 10);
eriteC' Incorret format or out of possible ron, tryj again.*);

aid
also

beg in
GotoXYC 12, 10);
ClI eorEOL;

end;
until not BadResponse;

'set
Badusponse := false;
BotoXY( 12, 13);
write('Enter last dayj of scheduling period (in/dd/yyyyy):*);
read In(LostDayj);
if (ord(LastDailllt) 49) or (ord(LostOW111) ( 4e) then-a~wos :- true;
If (ord(Last~asjl2J) > 57) or (ord(LastDaqj121) ( 468) then-aRPMM :3 true;
i f (LastDaqjfl * ') ad (oe-d(LastDoUI21) > 50) then-afesom :a true,
if (ord(LastDayC4D > 51) or (ord(LastDaiy(4I) ( 46) than

BadWeSPWMs := true;
if (ord(LastDW~(51) )57) or (ord(Lost~ay(51) ( 48) than

BAFdResPons := true;
if (ord(LastDfj171) )50) or (ord(LastDayI71) ( 46) then

Bodilksponse := true;
if (ord(LastDay(8D ) 57) or (ord(LostDwaj(81) ( 48) then

Badilexponse := true;
if (ord(LostDayI91) > 57) or (ord(Last~ay(91) ( 48) then

Badlesponse := true;
if (or'd(LastDaWj[1) > 57) or (ord(Lost~acj(101) ( 48) then

BadPesponse :- true;
if (Last~ay(31 <> Y) or (LastDaY161 () Y) than

Bad~esponse :a true;
if BodResposm then

beg in
GotoXY(61, 13);
CleaEOL;
GotoXY( 12, 10);
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rlte('Inarrect forast or out of possible rage, try again.');
end

elm
begin

GotoXY( 12, 10);
CleIOL;

unti Inot BadRapna

(Convert date from string format to 'date' format (integer) }

FIrst~ate.manth :* 10 * (ord(FIrstDay(l1) - 46) + (ord(FirstDayI2) - 48);
FirstUate.day :* 10 * (ord(FirstDayl4l) - 48) + (ard(FirstOaN(51) - 48);
FirstDate.yea :- 1000 * (ord(FirstDay[7) - 48) + 100 * (ord(FirstDoay[S) -

48)
+ 10 * (od(Firstloyllg) - 48) + (ord(FirstDa[1IO) - 46);

LastDate.month :- 10 * (ord(LostDayqll) - 46) + (ord(LastDay[2) - 48);
Lastfate.day := 10 * (ord(LastOaN141) - 48) + (ord(Lastlayl5) - 48);
Lastate.year :a 1000 * (ord(Lastcy[?1) - 40) * 100 * (ord(LastDay(eO) - 48)

+ 10 * (ard(LastDlj[gl) - 48) + (ord(LastlwNjI 101) - 46);

end; ( procedure Ramdte }

function Julian(SomlDate : date) : inte gr;

This function takes a date in 'standa'd' date format arxd
converts it to JuI ion format ( *.ys and ddd ))

temp : integer;

beg in
case SomeDte.month of

S: top := SomDoate.dqj;
2 tep :a SomOate.day + 31;
3 temp :a SodWate. day + 59;
4 tem :u Some~ate.d.,j + 90;
5 temp :- SomeDate.dacy + 120;
5 tep :a SoeeDate.dak + 151;
7 temp :Sam~ate. day + 1181;
8 temp := So ate.da + 212;
g temp := Somlate.day + 243;
10 temp :a Som)ate.doy + 273;
1 temp :" Saomate.dcky + 304;
12 tp :- Somate.day + 334;

end; 4 case Soeate.month of )
if ((SomDate. yew mod 4) a 0) then
tep := tep+ 1;

Jul ian := temp;
end; ( function Jul ion )

function Ds8tween(FirstDate,LastDate : date) integer;
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This functlon calculates the nmier of days betaen to dates.
)I

vwr

I : Integer;
FlrstJuleic, LastJul an : Integer;
tem : integer;

begin
FirstJul ian :- Jul lan(Firstflte);
LastJul in :a Jul len(LastOate);
taip := LastJul len - FirstJul Ian;
for I :a FirstDate.year to LastDate.ymr-l do

if (I mod 4) - 0 then
top :- temp + 388

else
tap :- tap + 35;

Dajs~eteen : temp;
end; ( function aDletween

proedi,. SetDate(var StartDayn, F : fUeek; urr HumStages integer);{
This procedure asks the user for the first and last day to
be scheduled. It then calculates the total number of stages
(hours) In the schedul ing period and the day of the aeek for the
first and last days.

alDays, temp : integer;
Ref : dote;
aqtrw array(O..61 of DaWfljeek;

today : Da Pfihek;

begin
Ref.month :- 1; Refer date is Friday, I January 198
Ref.day :m 1;
Ref.ye' := 1m;
OaWt'rayIO1 :a Friday;
D ay" l1I :a Saturday;
Oyfrr(21 :a Sunda;
0aqjrray[31 ;onday;
Ocarra(41 :" Tumsday;
layrrayI51 :" tNensday;
Darrr[6 :- Thursday;

ReadDateF I rstDate, Lastate);

( Determine the day of the week for the first day to be scheduled )
Mlt~ays :- OaysBetween(Ref,FirstDate);
tap := a ays mod 7;
StartDay :- l0yArrayltempl;

4 Determine the day of the week for the lost day to be scheduled )
HumDays := DaysSetueen(Ref,LastDate);
top : maays mod 7;
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tMwDy :u Owjuietween(First~ate,Lastflate);
today :a StartDay;
Ntetages :a 0;
for temp :-0 to NiuDaiyp do

begin
if (tieettodayl.open <3 timeltoday] close) then

Muestoges := lllm~toges + tlmettoday Lclose - timettodayI.open +
int(ThN/lO-0*100);

if todayj a Sundayj then
today :a Mondayj

else
todayj :a Succ(today);

end;
lHm~tages :- thumtages div 100;
If Th 0 W0 then

NumStages :- NtitStagms * round(50/Th);

end; ( procedure SetDote )

procedure IlinCostFlou(Humtodes,u'crs : Integer;

var x : rray
F PA-chrau;

b : odefrray;
u Rrcfth

This procedue solves the Mlinimum Cost Flow problem:

vimc

x - vector of arc flows
c a vector of arc flow costs
b =vector of node supply or demands
u = vector of arc flow upper bounds
A a node are incidece matrix
Numflodes - number of nodes in the network (max is 254)
Numrcs - number of arcs in the network (am is - humNodes)

Notice that the nd arc Incidence matrix wais not one of the
input parametes Instead, the arras F & T wre used, where:

F a 'From" function of an arc, i.e. Fix(i,J)I = I
T - "To" function of an arc, i.e. T ex(ij)I J

Notice that F & T require much less memory than A.

The following con stnts must be defined before the tock ope
is caoled:

flaxA'Lcs a255;
Nix~oes -254;

The following types must be defined before the
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is cat led:
Rrc~rrcj a arrail1. .#%xbCSI of integer;

-odeArrc * array I tlaxfodesI of integer;

For added speed, all IarIableIs and paramters wre definod as
Integmes. If noninteger values are neede, simply redefine
the variables and parameters as reals.

The out of kilter algorithe Is used to solve the problem.
Reference: Algoritims for Network Prog Ing, bsj Jeff L.

Kemnington & Richd U. Helgoan. John Wiley
r Sari, NIee York, 190.

-- - - - - - - - - -- - - - - - --- -- - - - - - - - - - -

const
i a 9M;

type
SladklodeSet set of I..lxhodes;
SlackrcSet set of I..laxFrcs;

var
pi : hodelraqj { dual variables )
cost : cft*ray; { cost(jI a pI(F(jII - pI[TIjI) - cjI }
theta integer; amount to cig dual variables }
psi1 : set of 1..IlaxArcs; { candidate set for tree
ps12 set of I.-. rcs; ( candidate set for tree )
Mthat : set of 1..Mmodes; { current nodes in tree }
Rhat set of 1..axArcs; { current or In tree }
delta oderay; mt to hage flows in cycle)
i integer; ( loop control variable )
j: Integer; { loop control vari able }
s integer; ( out of kilter arc
need-arc boolen; ( Indicates whether an out of kilter arc is known I
in-ki I ter : boolean; ( indicates whether all arcs are In kilter }
no.-,ccle boolean; { indicates whether a cycle exists )
lumlacr cs integer; ( total i of arcs after slack a awe added )
MumSlacikodes integer; {total 9 of nodes after slack node Is added )

procedure Initial..Solution;

This procedure finds an initial feasible solution to start
the algorithm.

The initial solution Is found by use of the "all-artificial
start." An extra node, NuIlodes l, Is added to the network.
For each source node i with supply bill, a slack arc is

Sfrom I to NIhodes+l with c[slock arc) u 0,
ulslack arc] a infinity, and x~slack arc] a bill.
For each demand node k with demand Ib~kIl, a slack arc is
added from MLm odesl to k with cislack arc] a infinity,
u(slack arc) a infinitu, and x[slack arc) * IbIkIl.

var
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HL : sot of 1. .ll dciU;
NU : set of 1. .a-wdios;
found : boolm;
j integer;
i integer;

begin
for j : I to Mumfd's do

begin
xij] :a 0;

end;
for I :a 1 to Nuodes do

begin
if blil > 0 then

begin

uli+u rmsl :a inf;
T1I+ltu4irEs] :m Huatodes + 1;
Fli+Nuld~rcs :mi;

end; ( If bill 0 )
If bil (a 0 then
begin

xilt+tufres] :a -bill;
cli+u r]s :l Inf;
uli+tumtrcs :- inf;
T Ci OluRrcs] :" i;

Fil+t* !csl :I Nl' odes + ;
end; ( If bil (= 0 )

end; ( for I := I to }uafodes

for i :- I to NumS Ila lkodes do ( fill pilll for all nodes I
pilil := 0;

for j : 1 to NumS lckarcs do {coe" e ostiji for all arcs
costij I :a piiFIJi1 - pi TiJl1 - cij1;

end; { procedue Initial.Solution )

procedure ArcSearch(var in-kilter : boolean; var es : integer);

This proceduwe searcs for an out of kilter arc in the network.
If all network ars are in kilter, then the flag in.kilter is
set to true. Othwise, the first out of kilter arc found is
returned in es, and the flag in-kilter is set to false.

This procedure assuImes that all parameters are available, ie
ciji, xiji, pin), & cost[ji a pi[FijIl - pi[TijIl - ciji)

begin
in-killter :- true;
j :I0;

j : j + 1;
if (costiji < O) and (xiji > 0) then
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in.klIter : false;
If (osttji 0) and (xljl ( ulij) then

In-kilter :- false;
until (not in.k I ter) or (j h flumSlackftcs);
if (not in.kilter) then
as :" J;

end; ( procedure AreSearch)
..:"... ..... .............. . . .. ." " .. .. .. . .'" " " . . .. .. II

proceduae primal(as : Integer; var no-c.le.f lag boolean);

This procedure executes the primal phase of the out
of kilter algorithe with arc es. If the algorithm
terminates with the conclusion that no cycle exists,
no-nycle.f lag is set to true. Otherwise,
no..cycle-flag Is set to false.

found : boolean;
j,i : integer;
tree.path : Arcfirrau;
numpath.arcs integer;
currmnt.node integer;

procedure find.lpath(k,I : integer; N : SlackhdodeSet;
A: SlackfrcSet;
var path : r IE
var num..in.path : integer);

This procedure finds the path thru the tree h
from node k to node I (assumes that there is
only a single path in I from k to I). The path
is returned in the array path and the number of
arcs in the path is returned in hum.inpath.

var
next.node : array[I..laxtlodes of Integer;
found.nodes : SlackflodeSet;
i,j, currn.Lnode : integer;
found : boolean;

begin
next.odetll :a I; { start at I - there's no next node
found.nodes :a I 1;
repeat

for j :j I to NumSI ckfrcs do
begin
if (j in A) then
begin
if (TIJ) in found.nodes) and

(not(FJ IIn found.nodes)) then
begin

found.nodes :a foundxnodes + ( FIj! 1;
next.nodelFlj]] :I Tij3;
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_-J

end;
if (FIj I in found.nodes) and

(not(TIj I in fouadxidnods)) then
begin

found.nodes : fourd.nodes + I Ttj 1 1;
nt-node ITiJ :- FIj 1;

end;
end; { If (TIji in N) and (FIji in N) }

and; ( for J :a I to lumSIackFecs }
until (k in found-nodes);
nui-ln.-lpth :0 ;

currenL-node : k;
reet

j :a 0;
found := false;
while not found do

begin
j :a j + 1;
if ((j in R ) aid (FIji - next.nodelicurrenLnodei)

and (TiJI a current.node)) then
beg in

nun.in.:path :- numIn.path + 1;
found := true;
path(nim.Lin..pathI : j;
ciavenLnode :a Fiji;

end;
if ((J in R) and (Fiji a current-node) and

(TiJ I a nexroidelcurrent-nodel)) then
beg in

num.inpath :* rmuLmin.path + 1;
found := true;
path ImmLi n.-ath I := j ;

currenLtnode := TIj 1;
end;

end; ( while not found }
until current-nods a I;

end; ( procedure f ind.path}

begin
Ahat :a 1); (0. Initialize -
If costies) 4 0 then
begin

tihat := I Tlies 1;
deltatTlesl :- xiesi;

end I if costles] 0 )
else { costlesi >m 0 )

begin
lihat :a I Fies] 1;
deltalFiesl) :m ules) - xles];

end; else 

repeat
psil :u ii; { 1. Determine Cardidates for Tree }
psi2 :- 11;
for j :a I to Mui Slackrcs do

begin
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If ((J<)s) and (cost(1 >m 0) and (xiji ( uiJi) aid
(T~j) In Itiat) and (not(F(j] in Mhat))) then

psil := psi1l + Ij I;
i f ((j (>s) aid (costlji I < 0) and (xEj I ) 0) and

(Fij I in ihat) and (not(Tlj I in ltiat))) then
psi2 :- ps12 + I j 3;

end; ( for j := I to thumSlacrcs
If C(psil + ps12) (1I) then

beg in
no-.cycle-.f lag :true;
exit;

end ( if ((psll + psi2) 11C)
else

no..cycle-flog := false;

jU 0; (2. ReNd e Arc to Tree
found :*false;
repeat

j :- +
if (j in psll) then

beg in
if (deltoITIJ1l c (uljl - xljDI) then
daltaCFljlI :a delto(Tij))

else
delta[Fljil := (ulj1 - xlJD1;

found atrue;
end;

if (j in ps12) then
beg in
If (deltoCFlj)i < x~j]) then

del toiTij I I del talFj I I
else

del taITIj I I x~jI1;
found := true;

end;
until found;
lihat :*htat + C TljI,FCjI 1;
Ahat Shoit + ECj 1;

until (Fies] in tihat) and (Ties) in Mtat);

if (costles) 0) then {3. lBreakthrough)
beg in

flIndpath(T les1, F les), hat,ARhat, tree.piath, num..path-..res);
current-node :a Ties];
for j -a Ito nuL.patkL-arcs do

beg in
if (Ttree.pathClI I cis-rent..node) then

beg in
xitree..pathij II xltree.pothiJ) +3. deltaiFtesll;
ctmi ent-.node F~ FItree-.pathitj 11;

011d
elIso ( F Itree-.po th IJ I1 I curren Lnode

beg in
xAtree-.pathij 13 :a xltree-pathtj 33 deltalFlesJI;
cmaret...nde T- TItree.path Ij 11;

end;
eid; ( for J I to neum..pa th-.arcs)

xfsI :a xfesl delta[Flesl];
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end
alseo costles) U 0)

begin
currenrodm := Fles];
f i nd-.path(F (as 1, T tes 1, Itiat, RUiat, tree-path, niua..path..wcs),
for J : - I to num-.path..w'cs do

beg in
if MTtree..pathlj)] current-rode) then

beg in
xltree-.pathij I : x(tree-.path(j 11 + delta[FleslI;
current-node := Fftree-.pathij 11;

and
elIse ( F Itree-.path Ijl I - curren...node

begin
xltree..pathljll := xltree..pathjll delta(FResII;
cuwrent-rode := Tltree-.pathlj 33;

end;
end; {for J .I to r*....pth-arcs)

xlesi U des] deltatTtesII;
aid;

end; (proceue pr imal I

procedure duoaI es :integer; var need..arcfIlag :bool am)

This procedre implemen ts the dal phase of the out of
kilter algorithm on the tree developed in the primal
phase and sets the flIag need-.arc-.f Iag. I f arc es I s I n
kilter at the end of the dual phase, a rew out of kilter
amc must be found, so nee&..arc-.flIog Is se t to true. If
arc es is still out of kilter at the end of the dual phase,
then the primal phase must be executed again, and the
need...arc..fiag is set to false.

var
i~j :integer;

beg in
Start with T a (14hat,Rhot) I(0. Initialization
{developed in primal phase

psil := 11; (1. Determine Arcs Incident on T
psi2 :a 11;
for j :m I to tMimSlackftrcs do

beg in
If (cost lJ I 10) and (not(F IJ I In ttbat)) and

(T(j] in ilhat) then
psil :- psil + I j 1;

if (costtj I ) 0) and (FIJI In rtiat) and
(not(TijJ in Hhat)) then

psi2 :a ps12 + I j );
end; (for j :a I to lMimS~acikfrcs

theta :~inf; ( 2. Determine Mlaximum Permissable Change
for j :u I to tumSlackArcs do
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I f Qi In (ps I I4 psl12)) and (Abs(costJ t) I theta) then
theta :a Rlbs(costlj 1);

for I a- I to MumS Iacktlodes do (3. Reduce DualIs
If I in Mtiat ) then
pill) :a pill) - theta;

for j I to t*mSadircs do (Update Costs
costCl := piIFCJI I - pilTlj11 - c(J 1;

need-are.f lg :a true; {Set need-.rc..flag)
If (castles] ( 0) and Wals] > 0) then

need-.mc-flIag : ufalIse;
If (costles) )0) and Wals) ules]) then
ned..rc-.flag :- false;

end; ( procedure dual)

beg in
tHumSlaclktodes :a Num~odes + 1;
flueS Iacklrcs := lMurcs + humhodes;
ml tial.Solution; ( Find an initial set of feasible flos
need..ore :a true; (Do not currently kno an out of kilter amc
Fepet
if need...wc then 4Find an out of kilter arc s

beg in
ftrcSearch(in-.kilter,s); 4If no out of kilter arcs,

in-.kilter a true
and;

if.not In-.klter then
beg in

primal (s,no...ctcle); 4Execute the primal phase with arc s)
need-.arc := true;
if (no-cyo~cle) then

begin
duoaI(s, ned.arc) If primal phase finds no cycles,

execute dual phase
end;

and; ( if not In-.kilter)
until in-kilter;

end; ( procedure llinCostFlow

-------- - -- . . ........)

procedure Phase I;

This procedure performs the Phase I portion of the probl em, I.e.
determination of the checker requireamnts.

The checker requIremnts wre returned i n the glIobalI vector k and
are output to the file Serversout.

Ia

OutputFile : text;
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beg in
SitDate(FirstDay,LastDciy,TotalStage); Aks for period to schedule
Gethrrivals(tt,R); Remad arrival data into A, * stages into M9

if C( (), TotalStages) then (If MI < TotalStoges, something erong
begin

ClearScreen;
GotoXY( 15, 12);
vrite(tkmber of stages in firivals.Dat does not match number');
GotoXYC 15, 13);
erite('of stages from first to last day of scheduling period.');
OotoXY( 15, 15);
write(' Strike return to continue.');
GotoXY(23, 1?);
or Ito( ' M a ', M);
GtV(25, 18);
arite('TotalStages a ,TotalStages);
read In;
Exit;

I n tPo Inters(tt); (Initial ize pointers)
Fl IlOPTabIe; (Calculates f & d for the entire DIP state-stage table
Forwrdass; ( Finds optimal path titru OPD state-stage table}
if TotaiHours > Ilaxlours then

beg in
Excoedclours :- true;
Dea IIocate;

and
else

Exceedlours := false;
rew I te<OutputF I I, Serv~ers. out'; Open output file
case FirstDij of W rite FirstDaj to output file)

Mlondayj witeln(OutputFIle,'Mondvj');
Tuesdayj uriteln(OutputFle,'Tuesday');
Wednesdayj erltein(OutputFile,'Wednesday');
Thursday writeln(OutputFile,'Thursdayu);
Friday. : -iteln(ckitputFile,'Friday');
Saturdayj : riteln(OutputFile,'Saturday~');
Sunday~ : ritain(ChtputFile,'Sunday);

end; ( case F Irs tDay )
forn : zIto M do WUrite optimal *checkers to Servers.out )
wn teln(OutputFi Ie,k~nI);

Close(OutputFi le); {Close output file)
enid; ( procedure Phasel )

This procedure rdsthe first day of the scheduling period
and the ideal checker requirements (output from Phase 0)
from the file 'Servers.out'. It then determines the optimal
niumbe of checkers to schedule for each shift. These optimal
shifts wre output to the file 'Shifts.out'.

var
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ImputFile text; ( File varlable for 'Servrs.ut'
OutputFile text; { File variable for 'Shifts.out'
DaText string103;
NumHours integer; ( 8 of hours store Is open for current day )
NumShifts integer; ( 0 possible dailV shifts for current da
lkmOa i : Integer; { * possible daily shifts + 0 deviation vars }
I*umG integer; (6 possible 8 howr shifts for current doqy
Iume integer; { possible 7 hour shifts for current daU 
Hum? integer; { * possible 5 hour shifts for current day

ium5 Integer; { 0 possible 5 hour shifts for current day )
I*u*4 integer; ( ' possible 4 hour shifts for current doay )
shiftF rcftrray; * Froe" functions for arcs (shifts) )
shifL.T : Rra j; { "To" functions for arcs (shifts) }
shift : Rrclv-ay; { 0 servers in each shift 
b : oderay; { change in hourly re uirements }
obj : &vW-ra; c ost coefficients in objective function )
upper : ArcRrla ; u plper bounds on shift variables }
shifL-start :Integer; (start time for the current shi f t
shiefLeid : integer; ( end time for the current shift )

begin
rset(InputFi le,'Servous.out'); Open Input File )
redin(InputFile,ODiTxt); { Pad first day of scheduling period )
if DayText m 'londcj' then

FlrstDlV :a llond
i f MVText - 'Tuesday' then

FirstDay : Tuesday;
if DaJText Wednesday' then

FirstUy Uednesd y;
If DajText ' Thursday' then

FirstDau :- Thursday;
if DayText 'Friday' then

FIrstDa :m Friday;
if DayText ' Saturday' then

FirstDay :- Saturdaj;
if OayText 'Sundayj then

FirstDj := Sunday;

{ Rad checker relquirements into k and total * stages into I )
n : 0;
while not SeekEof(InputFIle) do

begin
n : n + 1;
if not SeekEoln(InputFi I.) then

reoad(InputFile,kin)
else

begin
readIn;
reod(InputFI lekini)

end;
end;

Close(InputFi le);
IM := n;

rm ite(OutputFi le, 'Shifts.out');
if ExceedHours then

begin
ar ite(OutputFile . '---- :--- --------------
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witeln(OutputFile, --

writ@(OutputFlle,l MNG IMIIlN 1.1"11,10

writainCOutputFi Is);
mhlteln(OutputFi le);
wr Ite(OutputF I I e, 'Ideal dumcker requirements for each hour )
inrl tain(OutputFl Ic, exceed the maximim total hours.');
wlitln(OutputFileI);
uite(OutputFile,' Sget you reaetarget customer waiting )
writein(OutputFile,'tim and run prog again.');

sri teln(OutputIF11Is;
u'rltai(OutputFile);_______________

uriteln(OutputFile/7 ;

writIn(OutputFi I.);

end;

CurrentDay :m FirstDayj;
n :m 1;

ret

tNum~ours : (timeiCiurrent~aijl.close - timeiCurrentDaqjl.open) dlv 100;
if HumHours (> 0 then

begin
IMimlours := tIua~ours +' 1; ( Add 1 hour for additional,

redundant node)

for I I to l9.ieowrs do
beg in

if I a I then
bill :akin)

also
if i m MA4ours then

blil :a-kin]
else

bill := kin) - kin-1];
if 1 ' Iuous: then

n :*n + 1;
end;

NuimS :-Im~ours - 8;
~Ma7 :M lmHours - 7;
Num6 MulHi~ours - 6;
t*.S :a tIum~ours - 5;

*4 := tMjmours - 4;
ttumUars :- NumB + Nun? + NumB + MNO +' Nu*4 +'

(2 * (umanlous - M);

for j :~I to tM do
beg in

shlfL-FZjl J;
shift-.TIJl :* + 8;
objiji 1 0;
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and;
for j : (HumG + 1 ) to (Hume6 + Mm7) do

begin
shi fLtF(JI :a J - MMa;
shifL-TIJI :n J - IILS 7;
objIji I w0;
upperIj I :w IIX-CHIECKER;

and;
for J := (NM~s + NOm + 1) to (NimS + Muw? + tikaG) do

beg in
shItifFIj I :~j - (NMM + Mum?);
shifL-TIJI :.J - (Mume + 1km?) + 6;
obj(J I :aO0;
up~pe(j I :a l'V-DECKERS;

and;
for J :k" +Im 4 km? + 1hm5 + I ) to

(t~MB + Mmm? + 1*.mG + f*5) do
begin
shift-FIJI := j - (ItaS + Mum7 + 'MU8);
sh IfLt.TIJ I :a J - (thiS + ftm? 4 MGV + 5;
objj :a0;
upeij I := MIXHDE~CEFS;

and;
for J a(HumS + It=? + MUG + rM05 + 1) to

(MuS + Mum? + Num5 + NOm + Mum4) do
beg in

sh IfLtF I JI : aj - (ItmS + 1km? + fNOn + MumS);
sh If .T Ij I :~ aJ - (ItB + Mum? + ?*.um + Ikm5) + 4;
objl I:m0;
upper I jI :a MV-..DECKEERS;

wid;

* From" & "To" functions for deviation variobies)

J : -(finS + Plum? + tkO + tMim5 + 1tim4 + I)
for I : w I to (HumHours- ) do

beg in
shift..F~j) :a 1; {di-
shifL-TIJI := I + 1;
objIj I :x 1;
upper(jI := MRX-DLECKERS;
shifL-F~II1 :a I + 1; {di+
shifL-TIJ+1I :a i;
obj(j+1I :m 1;
upqper(j+1) :- MUMM1EERS;
J := j + 2;

end;

flinCostFlou(lumi~oirsflumI~os,obj ,shi ft,shi fLF,shi ftT~b,upper);

W Lrite shifts to output file}
writein(OutputFi I.);
c-n Current~Om of

Mlonday eritin(OutputFiieflondayu);
Tuesday eritain(OutputFiie,'Tuesday');
WIAedadoj uritein(outputFile,Uedrmsdcyj);
Thursday writaln(OutputFii.,Thursdayu);
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Fa~rida ariten(ttputFie,Sirda );

Sunday : mritein(OutputFii.,'Sunday');
end; ( case CurrentDqj of)

cave CurrentDay of
Mlonday writeinCalonayj);
Tuesday vrlteinCTuemsdj);

I&vesday r wtat WVdemsday);
Thursday writelnC~hursday');
Friday : rittin(QFriday');
Saturdayj : writein(Saturday');
Sunday writeln(Snaq)

end; ( case CurrentDayj of

writaln(OutputFi .,' 8 Hour Shifts:');
for J := 1 to Mum.. do

beg in
shift-start :- tim(CurrentD"II.open + ((j -1) *100);
shift-wid :,a shift-start + (800);

iiteln(O..tputFi Ie,shi ftstart:4, '- ,shiftend:4,
I ',shl f tj 1:2);

end;

witln(OutputFile,' 7 Hour Shifts:');
for j : - (?*8G + I) to (tNumG + Nim?) do

begin
shift-start := timtCurrent~ayI.open +

((j - MAS - 1) * 100),
shift-and := shift-start + (O0);
write(OutputFile,'
uritln(OutputFi Ie,shift..stort:4, -',shift-nd:4,

* ,shiftljl:2);

sritaln(OutputFi I.,' 8 Hour Shifts:');
for j :- (tlum6 + Nijm7 + 1) to (tHjmG + hum? + NimG) do

beg in
shift-start := timeICurrent~a'yj.open +

((j - IuaO - Mum? - 1) * 100);
shifL-and := shift-.start + (O0);

* ,shifttjl:2);
end;

witaln(OutputFi he,' 5 Hour Shifts:');
for j ~(NumS + um? + NUmG + D) to

(HiuBS + I*7 + tNb + i*m5) do
beg in

shift-.start := tlme(CurrentDayI-open +
((j - MuS- Its? - ttm8 - 1) * 100);

shift-mnd := shift-start + (500);
urite(OutputFile,'.)
ml teln(OutputFi leshi ftstart:4, -' ,shifL-mnd:4,

* ,shlft(J 1:2);
end;
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wriUtIn(OutpUtFil, '  4 Hour Shifts:');
for j :o (lHmS + Wm7 + Hu6 + Im5 + 1) to

(t*m8 + Num7 + M*.a8 + l Ium5 + lka4) do
beg in

shift-start := time(CurrentDa1.open +
((J - hu-G - um7 - u - h - 1) * 100);

shifLnd := shift-start + (400);
wiri te(OutputFi le,' ')

ri tlln(OutputFi Ie,shi fLstar't:4, '-' ,shi fL.end:4,
',shlift(j:2);

and;

and; { if lWt*Hx () 0 )

if CwrntDay Sundayj then
CurrentDaj :- fondy

elso
Currentflpj :u succ(Curt'entOay);

until (n >" I9);
Close(OutputFi i);
writeln('lumber of stages ',n);

end; ( procedure Pase I )

{ M.. M. : . . -- - -- - -.. . . . . . . .; . .... .... :_ .- -- :.. :; - - - --- : :

procedre Solve;

begin
Phasel;
PhselI;

end; procedure Solve)

Po de SetHours;

This procedure is used to modify the store's hours of operation.)

correct, 9 : boolean;
dayj : DafUeek;
repnse : char;

begin
= ct :a false;
while not corret do

begin
ClearScreen; ( CIrScr in I11 Turbo }
OotoXY(1,7);
writeln(' Current hours of operation are:');
wri teln;
ul Iteln;
wr'iteln( ' OI Open Close');
ulitein;
for day :a Monday to Sunday do
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begin
cas doqj of

hond. :or ItC r p );
Tuesday wrlteC Tusda ' );

: e-I d o ke(' dmf');
Thursday : urlte( ThursdU ' );

Friday : vritoC Fridau );
Saturda : writeC Saturday ');
Sunday : write( &uday )

end; ( case )
If timeldayl.open - t.imdaIyl.close then

wrlteln( Closed,)
else

wri teli(t ine [€ay). open: O, t iM[ldayd.clos:8);

end; { daj a Mon to Sun }
rltein;

Batespon. :a true;
while I adPespose do

begin
writae Is this correct (Y/t)?');
redIn(response);
if (response a 'y') or (response - 'Y') then

exit
else

if (response a n) or (response a W1) then
Bodlesponse :- false

else
writeln('Please use: V for yes, I for no');

end; ( Sodesponse)
C I oScreen;
writein;
writeln;
writeln( Please use 24-hour times for all entries. ');
writln(' Time must be rounded to neorest hour.');
wri toln;
writeln( For days w store is closed, enter 0000');
writelnC for opening time and 0000 for closing

time.,)
writein;
for day := ionday to Sunday do

begin
case day of

honday writelnC Mondayf);
Tuesday : riteln( Tuesday');
a a chsday: rItein(' Wednesday ),
Thusday : #teln(' Thursday');
Friday : uritiln( Friday');
Saturday : ritaln(C Saturday');
Sunda : riteln( Sunky );

end;
write(' Open (xxxx):');
readl n(t i me (day. open);
write( Close (xxxx):');
reodln(timeldaU .close);

end;
end; ( not correct

end; { procedure SetHours)
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procedre SetMaxHours;

This procedure prompts the user for the maximum al lowable
checker hours and starts It in the global variable 1lax4ours.

beg in
ClearScreen;
0OtoXY( 15, 12);
writeCEnter maximum allowable total checker hours:');
reiad I n(1axmours );

end; ( procedure Setowdiours}
----.- - - -- -- --- --).. . -- -- - -- --

procedue SetTarget;

This procedure prompts the user for the desired customer
aliting time and stores it In the global variable target.I

begin
C learScreen;
GotoXY(20, 12);
writeCEnter desired customer waiting tim:');
readIn(target);

end;

( --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

begin

InitHours; { Initialize the default store hours }
InitTarget; { Initialize the default desired customer waiting time )
InitMaxHours; { Initialize the default maximum total checker hours )

done : false;
repeat

flenu(choi); Put upmenu }
case choice of

1: Phasel;
2 : Phasell;
3 : Solve;
4 : SetHours;
5 SetTarget;
6 SettMaxHours;
7 : done :a true;

end; (case)
until done;
Exit;

end.
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Appendix B: Customer Arrival Data

Date Day Time A(n)

27-May-87 Wednesday 9 240
27-May-87 Wednesday 10 312
27-May-87 Wednesday 11 347
27-May-87 Wednesday 12 329
27-May-87 Wednesday 13 326
27-May-87 Wednesday 14 323
27-May-87 Wednesday 15 319
27-May-87 Wednesday 16 384
27-May-87 Wednesday 17 337
27-May-87 Wednesday 18 131
28-May-87 Thursday 9 158
28-May-87 Thursday 10 263
28-May-87 Thursday 11 311
28-May-87 Thursday 12 270
28-May-87 Thursday 13 300
28-May-87 Thursday 14 292
28-May-87 Thursday 15 309
28-May-87 Thursday 16 369
28-May-87 Thursday 17 337
28-May-87 Thursday 18 275
28-May-87 Thursday 19 201
28-May-87 Thursday 20 57
29-May-87 Friday 9 62
29-May-87 Friday 10 153
29-May-87 Friday 11 170
29-May-87 Friday 12 227
29-May-87 Friday 13 258
29-May-87 Friday 14 291
29-May-87 Friday 15 316
29-May-87 Friday 116 322
29-May-87 Friday 17 278
29-May-87 Friday 18 114
30-May-87 Saturday 8 166
30-May-87 Saturday 9 290
30-May-87 Saturday 10 345
30-May-87 Saturday 11 354
30-May-87 Saturday 12 400
30-May-87 Saturday 13 350
30-May-87 Saturday 14 363
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30-May-87 Saturday 15 332
30-May-87 Saturday 16 278
30-May-87 Saturday 17 114
31-May-87 Sunday 9 274
31-May-87 Sunday to 395
31-May-87 Sunday 11 334
31-May-87 Sunday 12 307
31-May-87 Sunday 13 257
31-May-87 Sunday 14 318
31-May-87 Sunday 15 156
31-May-87 Sunday 16 3
2-Jun-87 Tuesday 9 174
2-Jun-87 Tuesday 10 281
2-Jun-87 Tuesday 11 332
2-Jun-87 Tuesday 12 323
2-Jun-87 Tuesday 13 339
2-Jun-87 Tuesday 14 329
2-Jun-87 Tuesday 15 357
2-Jun-87 Tuesday 18 394
2-Jun-87 Tuesday 17 317
2-Jun-87 Tuesday 18 209
2-Jun-87 Tuesday 19 26
3-Jun-87 Wednesday 9 118
3-Jun-87 Wednesday 10 171
3-Jun-87 Wednesday 11 222
3-Jun-87 Wednesday 12 195
3-Jun-87 Wednesday 13 195
3-Jun-87 Wednesday 14 259
3-Jun-87 Wednesday 15 305
3-Jun-87 Wednesday 16 306
3-Jun-87 Wednesday 17 320
3-Jun-87 Wednesday 18 77
4-Jun-87 Thursday 9 144
4-Jun-87 Thursday 10 300
4-Jun-87 Thursday t 277
4-Jun-87 Thursday 12 308
4-Jun-87 Thursday 13 230
4-Jun-87 Thursday 14 260
4-Jun-87 Thursday 15 314
4-Jun-87 Thursday 16 383
4-Jun-87 Thursday 17 330
4-Jun-87 Thursday 18 219
4-Jun-87 Thursday 19 184
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4-Jun-87 Thursday 20 52
5-Jun-87 Friday 9 157
5-Jun-87 Friday 10 263
5-Jun-87 Friday 11 317
5-Jun-87 Friday 12 286
5-Jun-87 Friday 13 287
5-Jun-87 Friday 14 304
5-Jun-87 Friday 15 319
5-Jun-87 Friday 16 275
5-Jun-87 Friday 17 286
5-Jun-87 Friday 18 96
6-Jun-87 Saturday 8 120
6-Jun-87 Saturday 9 235
6-Jun-87 Saturday 10 281
6-Jun-87 Saturday 11 345
6-Jun-87 Saturday 12 340
6-Jun-87 Saturday 13 334
6-Jun-87 Saturday 14 338
6-Jun-87 Saturday 15 306
6-Jun-87 Saturday 16 315
6-Jun-87 Saturday 17 129
7-Jun-87 Sunday 9 1
7-Jun-87 Sunday 10 244
7-Jun-87 Sunday 11 295
7-Jun-87 Sunday 12 280
7-Jun-87 Sunday 13 312
7-Jun-87 Sunday 14 353
7-Jun-87 Sunday 15 333
7-Jun-87 Sunday 16 124
9-Jun-87 Tuesday 9 197
9-Jun-87 Tuesday 10 295
9-Jun-87 Tuesday 11 303
9-Jun-87 Tuesday 12 304
9-Jun-87 Tuesday 13 316
9-Jun-87 Tuesday 14 278
9-Jun-87 Tuesday 15 306
9-Jun-87 Tuesday 16 352
9-Jun-87 Tuesday 17 309
9-Jun-87 Tuesday 18 186
9-Jun-87 Tuesday 19 53
10-Jun-87 Wednesday 9 119
10-Jun-87 Wednesday 10 234
10-Jun-87 Wednesday 11 277
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10-Jun-87 Wednesday 12 249
10-Jun-87 Wednesday 13 238
10-Jun-87 Wednesday 14 275
10-Jun-87 Wednesday 15 271
10-Jun-87 Wednesday 16 259
10-Jun-87 Wednesday 17 246
10-Jun-87 Wednesday 18 0
11 -Jun-87 Thursday 9 73
1 1-Jun-87 Thursday 10 188
11-Jun-87 Thursday 11 242
11-Jun-87 Thursday 12 184
11-Jun-87 Thursday 13 207
I -Jun-87 Thursday 14 284
11-Jun-87 Thursday 15 298
11-Jun-87 Thursday 16 302
11-Jun-87 Thursday 17 316
11-Jun-87 Thursday 18 213
11-Jun-87 Thursday 19 193
11-Jun-87 Thursday 20 58
12-Jun-87 Friday 9 173
12-Jun-87 Friday 10 235
12-Jun-87 Friday 11 292
12-Jun-87 Friday 12 276
12-Jun-87 Friday 13 255
12-Jun-87 Friday 14 317
12-Jun-87 Friday 15 307
12-Jun-87 Friday 16 301
12-Jun-87 Friday 17 310
12-Jun-87 Friday 18 97
13-Jun-87 Saturday 8 75
13-Jun-87 Saturday 9 189
13-Jun-87 Saturday 10 313
13-Jun-87 Saturday 11 328
13-Jun-87 Saturday 12 363
13-Jun-87 Saturday 13 361
13-Jun-87 Saturday 14 327
13-Jun-87 Saturday 15 366
13-Jun-87 Saturday 16 355
13-Jun-87 Saturday 17 145
14-Jun-87 Sunday 9 68
14-Jun-87 Sunday 10 236
14-Jun-87 Sunday 11 299
14-Jun-87 Sunday 12 339
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14-Jun-87 Sunday 13 326
14-Jun-87 Sunday 14 336
14-Jun-87 Sunday 15 343
14-Jun-87 Sunday 16 159
16-Jun-87 Tuesday 9 200
16-Jun-87 Tuesday 10 322
16-Jun-87 Tuesday 11 300
16-Jun-87 Tuesday 12 327
16-Jun-87 Tuesday 13 279
16-Jun-87 Tuesday 14 302
16-Jun-87 Tuesday 15 371
16-Jun-87 Tuesday 16 334
16-Jun-87 Tuesday 17 313
16-Jun-87 Tuesday 18 199
16-Jun-87 Tuesday 19 59
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Appendi C: SLAM Code and Output

Case 1: 6 Jun 87
I OEI,CAPT FREY,0 5 JUN 87,I1/16/89,1,,N,Y/YN,Y/S,72;
2 L I ITS, 1, 4,500;
3 METUOIM
4 RESOLEWE/HECKERS(g), 1;
5 QMMRT,X( 1), 101;
8 RCTIVITY,,TNCII.LE.800,OK;
7 ACT I VITY, , ThI. OT. 5W, K IL.
8 KIL TERM;
g OK RISSIGiIRTRIB(2)-5. 158;

10 ASS I OI,RTR I (3)-ATR IB( I).ATR18(2);
11 ASSI O,RTRB(4 )"I(
12 RIJIT(1),CHECKERS/1;
13 ACT I VITY/ 1, RTRI18(2); SEIJ I CE TI ME
14 FREE,CHE KR/1;
15 EU~ENT,1;
18 COLCT,IHT(1),TIIIE IN SYSTEM;
17 COLCT, I NT(3),T IME IN 0JUE,
is TERM;

20 CRERTE, 50, 0, ,11;
21 EVENT, 2;
22 ACT I VITY, , ThU.GE. 50 .AMI. ThI.ILT. 120, P2;
23 ACTIIJITY,,TNO.OE.120 ANDO. ThOJ.LT.1SO,P3;
24 ACTIVITY,,ThOI.GE. 180 AMDl. ThOI.LT.240,P4;
25 RCTIUITY,,ThOIGE.240 AMtD. HMULT.300,P5;
28 ACTIUITY,,Th05.OE.300 .FWI. TH. LT. 3W, P5;
27 AICTIVITY,.TtIOU.GE.350 .AM1. ThI. LT. 420, P7;
28 RCTIIJITY,,TNOU.GE.420 .AMI. TNOI.LT.480,P8;
29 RCTIUITY,,TMOIJ.OE.480 RMI'lD ThOI.LT.540,Pg,
30 ACTIVITY, ,ThOI.GE.54O AM. ThOI.ILT.6W, P 16;
31 RCTIVITY,,ThOII.GE.800 .RI. THOI. LT. 660,P 11;
32 ACT IVUITY, , THOU.OGE. 6WP 12;
33 P2 ASSI ON,XX( I *W. 0/235.O0;
34 ALTER,CHEKER/.t1;
35 TERM INATE;
38 P3 AISSIGl,XX()860.0/281.0;
37 FLTER, CHECKEP.S/+3;
38 TERMINATE;
39 P4 ASS I G,X(( I)-W.0/345. 0;
40 ALTER,CHECKERS/+7;
41 TERMINATE;
42 P5 ASS ION, XX()W. 0/340.O0;
43 ALTER,04ECKERS/-1;
44 TERMINATE;
45 P5 AISSIOI,XX(l>u0.0/334.0;
48 TERMINATE;
47 P7 RSSIGl,XXD-6=W0/338.O;
48 ALTER,CHECKERS/4I;
49 TERMINATE;
50 PM ASS I tI( 1 )60.O0/306. 0;
51 ATER,CHECKERS/-5;
52 TERMINATE;
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53 P2 ASS IONXX( I). 0./315.O0;
54 ALTERCHECKEIS/*3;
55 TERM I AE;
55PO FIo AsI l, XX(10-50.0/ 129.O0;
5? ALTERCHECKEFIS/- 15;
58 TER1INATE;
59 Pi1 RLTERCHECKERtS/-12;
80 TEFMIIIWE;
81 P 12 RSS I GI,X( I)-In00;
82 TERNMINATE;
83 EIMTUORK
84 1 NTLC,( 1)0. 5, XX(2 )-0,)((3 )-0, XX(4 )u0,XX(5 )O,X (6 )0;
85 INIT,.,800.Otl;
86 FINl;
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SL A M II S UMM AR Y REPORT

SIMULATION PROJECT 0 6 JUM 87 BY CAPT FREY

DATE 11/16/1988 RUN NUMBER I OF 1

CURRENT TIME 0. 8000E+03
STATISTICAL ARAYS CLEARED AT TIME O.O000E+O0

**STRTISTICS FOR VARIABLES BASED ON OBSERVATION**

MEAN STRDARD COEFF. OF MINIMUM MAXIIUM NO.OF
VALUE DEVIRTION VARIATION VRLUE VALUE 08S

TIME IN SYSTEM 0.787E+01 0.111E+01 0.141E+00 0.516E+01 0.124E+02 2743
TIME IN QUEUE 0.271E+01 O.111E+01 0.40E+00 O.O00E+O0 0.722E+01 2743

**FILE STATISTICS'

FILE RUERAGE STANARD MAXIMU CURRENT AVERAGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

I RMIT 9.304 7.508 29 0 2.714
2 CALENDAR 19.504 12.193 33 1 0.931

**REGULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAX I MUM CURRENT ETTI TY
INDEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

1 SERVICE TIME 17.6787 11.9310 30 0 2743

**RESOURCE STATIST ICS**

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAXIMUM CURRENT
NUMBER LIBEL CAPACITY UTIL DEVIATION UTIL UTIL

CHECKERS 1 17.68 11.931 30 0

RESOURCE RESOURCE CURRENT RVERAGE MINIMUM MAXIIMUM
NUMBER LABEL AVA I LABLE AVA I LABLE AVA I LABLE A I LABLE

CHECKERS 1 0.2713 -15 9
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Case 2: 6 Jun 87
SLAM I I SUMMARY REPORT

SIMULRTIOM PROJECT Con Ladal 1 BY CRPT FREY

DATE 11/15/1988 RUN NUMIIER 50 OF 50

CURRENT TIME 0. 8000E+03
STATISTICAL ARRAYS CLEARED AT TIME O.OOOOE+0O

**STATISTICS FOR VARIALES BASED ON OBSERATIOI**

MEAN STANDARD COEFF. OF MINIMUM MAXIMUM O.OF
VALUE DEVIATION VARIATION VALUE VALLE OBS

TIME IN SYSTEM 0. 117E+02 0. 102E+02 0.874E+00 0. 155E+01 0.230E+03
TI ME I M QUEUE 0. 55E+01 0. 1C)E+02 0. 153E+01 O.OOOE+00 0.227E+03

**FILE STRTISTICS**

FILE AVERAGE STANDARD MAX I MUM CURRENT AVERAGE
MAIER LABEL/TYPE LENGTH DEVIRTION LENGTH LENGTH WAIT TIME

1 AIT 12.801 12.971 52 0 3.754
2 CALE1DAR 19.155 11.770 33 1 0.889

**REGULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STRNDARD MAXIMUM CURRENT ENTITY
INDEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

1 SERVICE TIME 17.6153 11.5713 30 0 2721

*RESOURCE STATISTICS**

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAXIIMUM CURRENT
NUMBER LABEL CAPACITY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 17.52 11.571 30 0

RESOURCE RESOURCE CURRENT AVERAGE MINIMUM MAX I MUM
NUMBER LABEL AVA I LABLE AILABLE AR I LABLE AVAILABLE

1 CHECKERS 1 1.4318 -15 18
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Case 3: 6 Jun 87
SLAM I I SUMMARY REPORT

SI MUIRTI OI PROJECT Con Lmdo I BY CRPT FREY

DATE 11/16/1988 RUMUMER 50 OF 50

CURRENT TIME O. 8000E+03
STATISTICAL ARRAYS CLEARED AT TIMlE O.OOOOE+00

**STRTISTICS FOR VARIABLES BRED ON OBSERURTIO"II

MERA STANRDM COEFF. OF MINIMUM MAXIMUM MO.OF
VALUE DEVIATION VARIATION VALUE VALUE OBS

TIME IN SYSTEM 0. 131E+02 0. 123E+02 0.940E+00 0. 159E+01 0.260E4)3 ' "

TIME IN QUEUE O.?GE+01 0. 122E+02 0. 153E+01 O.000E.O0 0.25WE'03

IFILE STRTISTICS**

FILE AVERAGE STANDARO MAXIMUM CURRENT AUERRGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

I ARIT 20.763 21.055 85 0 5.014
2 CALEDAR 19.519 12.029 33 1 0.894

**RE:ULAR ACTIVITY STRTISTICS**

ACTIVITY AVERAGE STANDARD MX I MI'I CURRENT ENT I TY
INDEX/LRBEL UTILIZRTION OEVIATION UTIL UTIL COUNT

I SERVICE TIME 17.6009 11.5214 30 0 2762

!**RESOURCE STAT IST ICS"

RESOURCE RESOURCE CURRENT AVERAGE STADA MAX I MUM CURRENT
NUMBER LABEL CAPACI TY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 17.50 11.821 30 0

RESOURCE RESOURCE CURRENT AVERAGE MINIMUM MAXIMUM
MBER LABEL RVA I LALE RUR I AIGlE AVA I LABLE AVAILABLE

1 CHECKERS 1 1.2555 -15 18
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Case 4: 6 Jun 87
S L AM I I SUIMMRMA Y REPORT

SIMULATION PROJECT Con Loudo I BY C',PT FREY

DATE 11/16/1988 FRNNIUM1BER 5 OF 50

CURRENT TIME O. 9004 03
STATISTICAL A:WAYS CLEFRED AT TIME O.OOOOE+O0

*'"STRTISTICS FOR VFIIBLES BASED ON OBSERVATI ON*

MEAN STAIOFAM COEFF. OF MINIMUM MAXIMUM HO.OF
VALUE DEVIATION VARIATION VALUE VALUE OBS

TIME IN SYSTEM 0. 172E+02 0. 178E+02 0. 103E+01 O. I55E+O1 0.285E+03
TIME I" QUEUE 0. 121E+02 0. 177E+02 0. 147E+01 O.O00E+O0 0.282E+03 ',

**FILE STATISTICS**

FILE AVERAGE STAMM: MAXIMUM CURRENT AVERAGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WRIT TIME

I FAIT 42.949 25.762 92 7 12.554
2 CALENDR 19.729 11.764 33 2 0.914

**REOULAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT ENTITY
INOEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

1 SERIVICE TIME 17.5882 11.5355 30 1 2729

**RESOURCE STRTISTICS**

RESOURCE RESOURCE CURRENT AVERAGE STAMDR MAXIMUM CURRENT
NUMBER LABEL CAPC ITY UTIL DEVIATION UTIL UTIL

CHECKERS 1 17.59 11.535 30 1

RESOURCE RESOURCE CURRENT AVERAGE MINIMUM MAXIMUM
NUMBER LASEL AVAILABLE AVAILABLE AURILBLE AVAILABLE

CHECKERS 0 0.9292 -15 21
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Casel1: 11 Jun 87
S L AM I I S UMIM ARAY R E PORAT

S IMULAT ION PROJECT 0 11 JUN 87 BY CAPT FREY

DATE 11/16/1988 RUIMUMBES I OF I

CURRENT T I ME 0. 8000E+03
STRT IST ICAL ARRAYS CLEARED AT T IME O. 0000E+00

**STRT IST ICS FOR VARIARBLES ASMED ON OBSERVAT ION*

MEAN STAMMAR COEFF. OF M I NIMUM MAX IMUM MO. OF
VALUE DEVIATION VARIATION V19LUE VALUE OBS

TIME IN SYSTEM 0.8715E+01 0. 17SE401 0. 1ggE+00 O.516E01O 0. 167E402 2558
TIME IN QUEUE 0. 35 E401 0. 175E4O 1 0.484E400 0. OOOE+OO 0. 115E402 2558

**FLE STATISTICS**

FILE AVERAGE STRIDR MAX I MUM CURRENT AVERAGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

I AWAIT 11.535 7.857 33 0 3.8603
2 CALENDAR 18.386 8.817 30 1 0.5

**REGULR ACTIVITY STATISTICS**

ACTIVITY AVEAGE STRIAOM MAX IMUM CURRENT ENTITY
INDEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

1 SERVICE TIME 15.4863 8.5245 27 0 255

**RESOURCE STATIST ICS**

RESOUIRCE RESOURCE CURIRENT AVERAGE STARDM MAX I MlUM CURRENT
NUMBER LABEL CAPACITY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 16.49 8.825 27 0

RESUC RESOURCE CURRENT AVERAGE MINI MUM MAX IMUM
NUMBER LABEL AM~ I LABLE AVAILABLE AVA I LABLE AVA ILABILE

1 CHECKERS 1 0.1887 -11 5
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Case 2: 11 Jun 87
S L AM I I SU MM ARAY R EPOR AT

SII MLLFTI101 PROJ.ECT Can Lando 2 BY CAPT FREY

DATE 11/1/88 RUM NJ1UBS 50OOF 50

CURRENT TIME 0 O.E403
STAT ISTICAL ARRAYS CLEARED AT TIME 0.OOOOE4O0

'*STRTISTICS FOR VlA9LE S ~ED ON OBSERVATION**

MEANI STAIIDARD COEFF. OF MINIMUMI MAXIMUM NO.OF
VALUE DEVIATION FARTION VALU.E VALUE 08$

TIME IN SYSTEMI 0. 121E+02 0.795E+01 0.64gE.00 0. 15WE401 0. 154E+03
T IME 1II QUEU.E 0. &AE4O1 I .75gE4.01 0.10ogE+01 O.OOOE4O0 0. 13ME03

**FILE STATISTICS**

FILE AVERAGE STANDARD MAX IMUM CURRENT AVERAGE
NUMBER LABEL/TYPE LENGT DEVIATION LENGTH LENGT WAIT TIME

I "WIT 5.858 5.943 27 0 1.858
2 CALEimA 18.051 8.452 30 1 0.951

**AEOULAR ACTIVITY STRTISTICS**

ACTIVITY AVERAGE STANDARD MAXIMUM CURRENT ENTITY
INDEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

I SERVICE TIME 16.3874 8.4792 27 0 2522

**RESOPrCE STATI1ST ICS**

RESOURCE RESOURCE CURRENT AVERAGE STANDARD) MAX I MUM CURRENT
NUMBER LABEL CPAC I TY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 16.39 8.479 27 0

RESOURCE RESOURCE CURRENT AV6ERAGE MINI MUM MAX IMUM
NUMBER LABEL AVAILABLE AVAILABLE AVAI LABLE AVAILABLE

1 CHECKERS 1 0.4144 -11 18
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Case 3: 11 Jun 87
S L AM I I SU MM A RY AREPO0R T

SIMLATION PROJECT Can LdoW 2 BY CAPT FREY

DATE '11/18/1968 RU UER 50OOF 50

cLff1T TI ME 0. SOOCE+03
STATISTICAL ARRYS CLEARED AT TIME 0.OOOE00

**STAT IST ICS FOR VARIABULES BAEDN OBSERVAT ION1*

MEANi STANIDARD COEFF. OF MINIMU.M MAXIMUM I1O.OF
VALUE DEVIATIONI VARIATION VALLE VALUE 095

TIME III SYSTEM 0. 139E+02 0. 101E402 0.725E+00 0. 155E+01 0. 152E+03 **

TIME INI OUEUE O.872E.0 .g85E+01 0.113E+01 0.OOOE+00 0.157E+03 *"

**ILE STATISTICS**

FILE AVERAGE STANIR MAX IMUM CURRENT AVERAGE
NIUMBER LABEL/TYPE LENGTH DEVIATION L.ENGTH LENGTH WAIT TIME

A WAIT 18.299 14.204 83 0 5. 101
2 CALENDAR 18.463 8.482 30 1 0.950

**REG1.LAR ACTIVITY STATISTICS**

ACTIVITY AVERAGE STANDARD MAX IMUM CURRENT ENTITY
I MOEX /LABEL UTILIZATION DEVIATION UTIL UTIL COUNfT

1 SERVICE TIME 16.4270 8.4810 27 0 2W58

**RESOURCE STAT IST I CS**

RESOURCE RESOURCE CURRENT AVERAGE STANDARD MAX I MUM CURRENT
NUMBER LABE CAPACITY UTIL DEVIATION UTIL UTIL

1 CHECKERS 1 16.43 8.481 27 0

RESOURCE RESOURCE CURRENT AVERAGE MINIMfUM MIAX I MUM
NUMBER LABEL AVAILABLE FAAILABLE AVA I AGL RU AVILABLE

I CHECKERS 1 0.3357 -11 15
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Case 4: It Jun87
SLAM I I SUMMARY REPORT

SIIIULATION PROJECT Con Loida 2 BY CAPT FREY

DATE 11/16/1988 RUtN NUMBER 50 OF 50

CURRENT TIME O.OOOE+03
STATISTICAL ARRAYS CLEARED AT TIME O.OOOOE+00

**STRTISTICS FOR VARIABLES BASED ON OBSERUATION**

MEAN STANDARD COEFF. OF MINIMUM MRXIMUM MO.OF
VALUE DEVIATION VARIATION VRLUE VALUE OBS

TIME IN SYSTEM 0. 163E+02 0. 137E+02 O.838E+00 . 156E+01 0. 170E+03 ****
TIME IN QUEUE O.111E+02 O.135E+02 0.121E+01 O.OOOE+00 0.16+E03

**FILE STATISTICS**

FILE AVERAGE STANDARD MAX I MUM CURRENT AVERAGE
NUMBER LABEL/TYPE LENGTH DEVIATION LENGTH LENGTH WAIT TIME

1 AIT 10.989 12.032 54 0 3.579
2 CALENDAR 17 82 8.451 30 1 0.964

**REGULAR ACTIUITY STATISTICS**

ACTIVITY AVERAGE STADA MAXIMUM CURRENT ENTITY
INDEX/LABEL UTILIZATION DEVIATION UTIL UTIL COUNT

1 SERVICE TIME 16.2872 8.4402 27 0 2456

*RESOURCE STATIST I CS**

RESOURCE RESOURCE CURRET AVERAGE STANA MAX I Ml CURRENT
NUMBER LABEL CRPACITY UTIL DEVIRTION UTIL UTIL

CHECKERS 1 16.29 8.440 27 0

RESOURCE RESOURCE CURRENT AVERAGE MII MUM MAX I MUM
MBER LABEL AV IL ABLE U I LABLE AV I LABLE AVAILABLE

I CHECKERS 1 0.4695 -11 17
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added heuristically near the end of each day to obtain the desired customer
waiting times.

Several extensions of this work are possible. First, an improved
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day. Use of such an approximation could eliminate the need for heuristic
rules in scheduling servers during the last few periods of each day.
Second, the scheduling algorithm that was developed did not account for
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problem, but two different approaches were suggested for a solution
allowing for checker lunch breaks. Finally, a third phase could be added to
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